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Abstract. Euler and Aristotelian diagrams are both among the most
well-studied kinds of logical diagrams today. Despite their central sta-
tus, very little research has been done on relating these two types of
diagrams. This is probably due to the fact that Euler diagrams typically
visualize relations between sets, whereas Aristotelian diagrams typically
visualize relations between propositions. However, recent work has shown
that Aristotelian diagrams can also perfectly be understood as visualiz-
ing relations between sets, and hence it becomes natural to ask whether
there is any kind of systematic relation between Euler and Aristotelian
diagrams. In this paper we provide an affirmative answer: we show that
every Euler diagram for two non-trivial sets gives rise to a well-defined
Aristotelian diagram. Furthermore, depending on the specific relation
between the two sets visualized by the Euler diagram, the resulting Aris-
totelian diagram will also be fundamentally different. We will also link
this with well-known notions from logical geometry, such as the informa-
tion ordering on the seven logical relations between non-trivial sets, and
the notion of Boolean complexity of Aristotelian diagrams.

Keywords: Euler diagram · Aristotelian diagram · square of opposition
· logical geometry · information ordering · Boolean complexity.

1 Introduction

Euler diagrams are among the most well-studied kinds logical diagrams today
[1, 20, 24, 26, 27]. They have a rich history, which obviously includes the work of
Leonhard Euler in the eighteenth century, but also goes back much further, at
least to medieval manuscripts from the eleventh century [11, 16–18]. Similarly,
Aristotelian diagrams (such as the square of opposition) are also studied inten-
sively today, especially in the burgeoning research program of logical geometry
[3, 9, 10, 25], and they, too, can boast a long and well-documented history [13,
21, 23]. The history of both types of diagrams is further described in [22].

? The first author holds a Research Professorship (BOFZAP) from KU Leuven. This
research was funded through the KU Leuven research project ‘BITSHARE: Bitstring
Semantics for Human and Artificial Reasoning’ (3H190254, 2019 – 2023).
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Fig. 1. (a) Euler diagram for A ⊂ B; (b) the corresponding square of opposition.
(Solid, dashed and dotted lines respectively stand for contradiction, contrariety and
subcontrariety; arrows stand for subalternation.)

Despite their central status, very little research has been done thus far on
relating Euler and Aristotelian diagrams.3 One explanation for this lacuna might
be that Euler diagrams typically visualize a relation between sets/terms, whereas
Aristotelian diagrams typically visualize relations between propositions/sentences.
However, recent work has shown that the mathematical background structure
required for obtaining a well-defined Aristotelian diagram is that of a Boolean al-
gebra, and it does not matter whether this is an algebra consisting of propositions
or of terms (or yet some other notion) [4]. Consequently, it becomes a mathe-
matically well-defined and conceptually natural question to ask whether there
is any kind of systematic connection between Euler and Aristotelian diagrams.
Our goal in this paper is to provide an affirmative answer to this question. In
particular, we will show how each Euler diagram for two (non-trivial) sets gives
rise to a well-defined Aristotelian diagram. Furthermore, depending on the spe-
cific relation between the two sets visualized by the Euler diagram, the resulting
Aristotelian diagram will also be fundamentally different.

The paper is organized as follows. Section 2 presents a motivating example
and describes some of the necessary theoretical background. Section 3 contains
the main results of this paper, and shows how each two-set Euler diagram gives
rise to an Aristotelian diagram. Section 4 presents some further discussion of
these results, and mentions some questions for future research.

2 Motivating Example and Theoretical Background

Consider the Euler diagram shown in Fig. 1(a). What does this diagram represent
or visualize? The standard answer is that the diagram visualizes two sets, Horse
and Animal (which exist inside some domain of discourse D), and the relation

3 A notable exception, albeit in a very different direction than the one we will take in
this paper, is the work of Bernhard [2].
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Horse ⊂ Animal, i.e., Horse is a strict subset of Animal. Relative to a Boolean
algebra of sets, this means that there exists a subalternation from Horse to
Animal.4 However, according to a less standard answer, the diagram in Fig. 1(a)
shows more than what has just been mentioned. First of all, by showing the
set Horse inside the domain of discourse D, it also shows, if only implicitly,
the complement set Horse = D\Horse. The same goes for the set Animal and
its complement Animal = D\Animal. Secondly, the Euler diagram also shows,
again only implicitly, five more relationships that these two new complement
sets enter into:

– Horse ∩Horse = ∅ and Horse ∪Horse = D,

i.e., Horse and Horse are contradictory to each other,

– Animal ∩Animal = ∅ and Animal ∪Animal = D,

i.e., Animal and Animal are contradictory to each other,

– Horse ∩Animal = ∅ and Horse ∪Animal 6= D,

i.e., Horse and Animal are contrary to each other,

– Animal ∩Horse 6= ∅ and Animal ∪Horse = D,

i.e., Animal and Horse are subcontrary to each other,

– Animal ⊂ Horse, i.e., there is a subalternation from Animal to Horse.

Taken together, these four sets and the six relations holding among them can
be visualized by means of a square of opposition, as shown in Fig. 1(b).5 This
Aristotelian diagram thus contains exactly the same information (i.e., the same
sets and the same relations among them) as the Euler diagram in Fig. 1(a).
The only difference between both diagrams is that the Euler diagram strongly
emphasizes two sets, viz. Horse and Animal, and one relation, viz. the subalter-
nation from Horse to Animal, while strongly ‘downplaying’ the two other sets
and the five other relations. By contrast, the Aristotelian diagram attributes

4 Given an arbitrary Boolean algebra B, we say that x and y are contradictory iff
x∧B y = ⊥B and x∨B y = >B, that they are contrary iff x∧B y = ⊥B and x∨B y 6= >B,
that they are subcontrary iff x ∧B y 6= ⊥B and x ∨B y = >B, and that they are in
subalternation iff x <B y. If B happens to consist of subsets of some given set D,
this means that X and Y are contradictory iff X ∩Y = ∅ and X ∪Y = D, that they
are contrary iff X ∩ Y = ∅ and X ∪ Y 6= D, that they are subcontrary iff X ∩ Y 6= ∅
and X ∪ Y = D, and that they are in subalternation iff X ⊂ Y . See [4, Section 2]
for further explanation and motivation.

5 This square might look a bit strange, since it contains sets rather than propositions.
However, we emphasize once again that Aristotelian relations (and thus also dia-
grams) can be defined relative to arbitrary Boolean algebras, regardless of whether
these algebras consist of propositions, sets, or something else. The square of oppo-
sition in Fig. 1(b) is thus perfectly well-defined, just like any other, more ordinary-
looking square of opposition that contains propositions rather than sets.
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equal status to all four sets and all six relations alike.6 Some of these ideas were
already mentioned in passing in a recent, more historically oriented paper:7

one can view the original Euler diagram in Fig. [1(a)] as a visual repre-
sentation of both proper inclusion relations—albeit, perhaps, with dif-
ferent degrees of visual perspicuity. More generally, from this alternative
perspective, the single Euler diagram in Fig. [1(a)] at once visualizes six
relations among Horse, Animal, D\Horse and D\Animal, all six of which
are also visualized by the classical square of opposition in Fig. [1(b)].

[5, p. 192, references to figures updated to the present paper]

In this paper, we will investigate these ideas more systematically. More specif-
ically, we will show that this kind of tranformation not only works for Euler
diagrams representing a subalternation relation, but also for Euler diagrams de-
picting any other kind of relation between two sets. In [25] it is shown that every
pair of non-trivial8 sets X and Y (within a domain of discourse D) stands in
exactly one of the following seven relations:9

1. contradiction (CD): X ∩ Y = ∅ and X ∪ Y = D,
2. contrariety (C ): X ∩ Y = ∅ and X ∪ Y 6= D,
3. subcontrariety (SC ): X ∩ Y 6= ∅ and X ∪ Y = D,
4. bi-implication (BI ): X ⊆ Y and X ⊇ Y , i.e. X = Y ,
5. left-implication (LI ): X ⊆ Y and X 6⊇ Y , i.e. X ⊂ Y ,
6. right-implication (RI ): X 6⊆ Y and X ⊇ Y , i.e. X ⊃ Y ,
7. unconnectedness (UN ): X ∩ Y 6= ∅ and X ∪ Y 6= D and

X 6⊆ Y and X 6⊇ Y .

The first three relations are sometimes called opposition relations, while the next
three are the implication relations. Note that left-implication corresponds to the
ordinary Aristotelian relation of subalternation. Unconnectedness can be viewed
as the absence of any other relation: X and Y are unconnected iff they do not
stand in any of the other relations. These seven relations constitute a refinement
of the five so-called ‘Gergonne relations’, which are perhaps more widely known

6 In earlier work [7, 8], we have argued that the idea that a square of opposition
attributes exactly the same status to all six relations should be somewhat nuanced.
For example, based on principles like center/periphery or on considerations regarding
distance, one could argue that contradiction (on the two diagonals, in the center of
the square) is visualized more prominently than the other relations (on the edges,
at the periphery of the square). However, these subtle differences in an Aristotelian
diagram completely vanish in comparison to the more drastic differences in emphasis
that occur in Euler diagrams — e.g. the explicit subalternation from Horse to Animal
versus the more implicit subcontrariety between Animal and Horse in Fig. 1(a).

7 The theoretical core of [5] consists of its Sections 3, 4 and 5. The present paper can
be viewed as building upon Section 3, while [19] elaborates on Sections 4 and 5.

8 Given a domain of discourse D, a set X is said to be non-trivial iff ∅ 6= X 6= D.
9 These seven relations could also be defined for arbitrary Boolean algebras instead of

just for sets. However, for the purposes of this paper this will not be necessary.
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Fig. 2. Information ordering on the seven relations between two non-trivial sets [25].

[12, 14]. The Gergonne relations X = Y , X ⊂ Y and X ⊃ Y straightforwardly
correspond to BI, LI and RI, respectively; furthermore, the Gergonne relation
X ∩ Y = ∅ corresponds to CD ∪ C, and X ∩ Y 6= ∅ corresponds to SC ∪
UN. Finally, these seven relations are ordered according to their information
levels [25]: it can be shown that contradiction and bi-implication are the most
informative relations, unconnectedness is the least informative, and the four
other relations’ information levels are in between. This information ordering is
shown in Fig. 2.

3 The Seven Euler Diagrams for Two Sets and
their Corresponding Aristotelian Diagrams

We will now consider Euler diagrams for each of the seven possible relations
between two (non-trivial) sets, and investigate what kind of Aristotelian dia-
gram they give rise to. We start with the implication relation of left-implication,
which boils down to re-examining the motivating example from the previous
section. The Euler diagram in Fig. 3(a) shows a left-implication (i.e., subalter-
nation) from A to B. In order to highlight the six relations that are shown by
this diagram, we will use thick black and grey ellipses for resp. A and B, and
thick black and grey dashed lines, together with a thickened rectangle for the
domain of discourse, for their complements, resp. A and B.10 Using this high-
lighting convention, Fig. 3(c) and (d) show the very same Euler diagram as in
(a), but now highlighting the subalternations from A to B and from B to A,
respectively. Similarly, Fig. 3(e) highlights the contrariety between A and B,
while Fig. 3(f) highlights the subcontrariety between A and B. Finally, Fig. 3(g)
and (h) highlight the contradictions between A and A and between B and B,
respectively. We emphasize once more that Figs. 3(c–h) should not be viewed as
six separate Euler diagrams, but rather as six ways of looking at one and the

10 The overall idea is thus that a set corresponds to the region delimited by a thick solid
line (either an ellipse or the outer rectangle), subtracting (if necessary/applicable)
the region inside the thick dashed line.
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same Euler diagram, viz. the one in Fig. 3(a). Needless to say, some of these six
relations — e.g. the subalternation from A to B highlighted in Fig. 3(c) — are
far easier to process than some of the others — e.g. the subcontrariety between
A and B shown in Fig. 3(f). Taken together, these six relations (all of which are
Aristotelian) constitute the classical square of opposition shown in Fig. 3(b).

Secondly, we consider the implication relation of right-implication. The Euler
diagram in Fig. 4(a) shows a right-implication from A to B, i.e. a subalternation
fromB to A. Using the same convention as before, Fig. 4(c) and (d) show the very
same Euler diagram as in (a), but now highlighting the subalternations from B to
A and from A to B, respectively. Similarly, Fig. 4(e) highlights the subcontrariety
between A and B, while Fig. 4(f) highlights the contrariety between A and B.
Finally, Fig. 4(g) and (h) highlight the contradictions between A and A and
between B and B, respectively. Taken together, these six relations (all of which
are Aristotelian) constitute the classical square of opposition shown in Fig. 4(b).

Thirdly, we switch over to the opposition relations, and consider the relation
of contrariety. The Euler diagram in Fig. 5(a) shows a contrariety between A and
B. Fig. 5(c) highlights the contrariety between A and B, while Fig. 5(d) high-
lights the subcontrariety between A and B. Similarly, Fig. 5(e) and (f) highlight
the subalternations from A to B and from B to A, respectively. Finally, Fig. 5(g)
and (h) highlight the contradictions between A and A and between B and B,
respectively. Taken together, these six relations (all of which are Aristotelian)
constitute the classical square of opposition shown in Fig. 5(b).

Fourthly, we consider the opposition relation of subcontrariety. The Euler di-
agram in Fig. 6(a) shows a subcontrariety between A and B. Fig. 6(c) highlights
the subcontrariety between A and B, while Fig. 6(d) highlights the contrariety
between A and B. Similarly, Fig. 6(e) and (f) highlight the subalternations from
B to A and from A to B, respectively. Finally, Fig. 6(g) and (h) highlight the
contradictions between A and A and between B and B, respectively. Taken to-
gether, these six relations (all of which are Aristotelian) constitute the classical
square of opposition shown in Fig. 6(b).

Fifthly, we switch back to the implication relations, and consider the relation
of bi-implication. The Euler diagram in Fig. 7(a) shows a bi-implication between
A and B. Fig. 7(c) and (d) highlight the bi-implications between A and B
and between A and B, respectively. Similarly, Fig. 7(e) and (f) highlight the
contradictions between A and B and between A and B, respectively. Finally,
Fig. 7(g) and (h) highlight the contradictions between A and A and between
B and B, respectively. Taken together, these six relations constitute the pair of
contradictories (PCD) shown in Fig. 7(b). This PCD contains two identical sets
at both of its vertices, which correspond to the bi-implications A/B and A/B
(which are themselves not Aristotelian). The single solid line corresponds to four
contradiction relations A/A, A/B, B/A and B/B (which are Aristotelian).

Sixthly, we switch back one more time to the opposition relations, and con-
sider the relation of contradiction. The Euler diagram in Fig. 8(a) shows a contra-
diction between A and B. Fig. 8(c) and (d) highlight the contradictions between
A and B and between A and B, respectively. Similarly, Fig. 8(e) and (f) highlight
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Fig. 3. (a) Euler diagram for the left-implication from A to B. (b) The corresponding
classical square of opposition. (c–h) Highlighting the six relations among A, B, A and
B in the Euler diagram (note: all six of them are Aristotelian relations).
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Fig. 4. (a) Euler diagram for the right-implication from A to B. (b) The corresponding
classical square of opposition. (c–h) Highlighting the six relations among A, B, A and
B in the Euler diagram (note: all six of them are Aristotelian relations).
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Fig. 5. (a) Euler diagram for the contrariety between A and B. (b) The corresponding
classical square of opposition. (c–h) Highlighting the six relations among A, B, A and
B in the Euler diagram (note: all six of them are Aristotelian relations).



10 L. Demey & H. Smessaert

Fig. 6. (a) Euler diagram for the subcontrariety between A and B. (b) The correspond-
ing classical square of opposition. (c–h) Highlighting the six relations among A, B, A
and B in the Euler diagram (note: all six of them are Aristotelian relations).
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Fig. 7. (a) Euler diagram for the bi-implication between A and B. (b) The corre-
sponding PCD. (c–h) Highlighting the six relations among A, B, A and B in the Euler
diagram (note: the four CD are Aristotelian relations, but the two BI are not).
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the bi-implications between A and B and between A and B, respectively. Finally,
Fig. 8(g) and (h) highlight the contradictions between A and A and between B
and B, respectively. Taken together, these six relations (four Aristotelian CD
and two non-Aristotelian BI ) constitute another PCD, as shown in Fig. 8(b).

Finally, we consider the relation of unconnectedness, which is neither a gen-
uine opposition relation nor a genuine implication relation. The Euler diagram
in Fig. 9(a) shows an unconnectedness between A and B. Fig. 9(c) and (d) high-
light the unconnectedness between A and B and between A and B, respectively.
Similarly, Fig. 9(e) and (f) highlight the unconnectedness between A and B and
between A and B, respectively. Finally, Fig. 9(g) and (h) highlight the contradic-
tions between A and A and between B and B, respectively. Taken together, these
six relations constitute the so-called ‘degenerate square of opposition’ shown in
Fig. 9(b). Apart from its two diagonals of contradiction, this Aristotelian dia-
gram does not have any Aristotelian relations to visualize (because the four other
pairs of sets are unconnected, i.e., do not stand in any Aristotelian relation).

4 Discussion and Future Research

In the previous section we have considered the seven relations between two (non-
trivial) sets, and shown how the Euler diagrams for each of these seven relations
systematically give rise to a well-defined Aristotelian diagram; cf. parts (a) and
(b) of Figs. 3–9. The resulting Aristotelian diagrams turn out be of various
types: we obtained four classical squares of opposition, but also two pairs of
contradictories (PCDs) and one degenerate square of opposition. Using recent
terminology from logical geometry, we say that these constitute three distinct
Aristotelian families, which are pairwise not Aristotelian isomorphic [3, 9].

It turns out that these findings can be linked to other interesting notions
from logical geometry, such as the information ordering on the seven relations,
which was already mentioned in Sect. 2 (in particular, cf. Fig. 2), and also the
notion of Boolean complexity of Aristotelian diagrams.11 Specifically, we observe
the following connections:

– the two most informative relations, i.e. contradiction and bi-implication, give
rise to a PCD (cf. Figs. 7–8), which has a Boolean complexity of 2,

– the four intermediately informative relations, i.e. contrariety, subcontrari-
ety, left-implication and right-implication, give rise to a classical square of
opposition (cf. Figs. 3–6), which has a Boolean complexity of 3,

– the least informative relation, i.e. unconnectedness, gives rise to a degenerate
square of opposition (cf. Fig. 9), which has a Boolean complexity of 4.

11 A detailed discussion of the notion of Boolean complexity (or bitstring length) falls
outside the scope of this paper. Very roughly, the idea is that the Boolean complexity
of a diagram D is the smallest number n of bits that are required to faithfully encode
D. Formally, given a Boolean algebra B and diagram D = {x1, . . . , xn}, we have
n = |{±x1∧B · · · ∧B±xn | ±x1∧B · · · ∧B±xn 6= ⊥B}| (where +x = x and −x = ¬Bx);
see [9] for much more mathematical details, motivation and examples.
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Fig. 8. (a) Euler diagram for the contradiction between A and B. (b) The correspond-
ing PCD. (c–h) Highlighting the six relations among A, B, A and B in the Euler
diagram (note: the four CD are Aristotelian relations, but the two BI are not).
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Fig. 9. (a) Euler diagram for the unconnectedness between A and B. (b) The corre-
sponding degenerate square of opposition. (c–h) Highlighting the six relations among
A, B, A and B in the Euler diagram (note: the two CD are Aristotelian relations, but
the four UN are not).
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We thus find an inverse correlation between (i) the information level of the
relation visualized by the Euler diagram and (ii) the Boolean complexity of the
corresponding Aristotelian diagram.

The true significance of these results is not yet fully understood at this point,
but they clearly illustrate the theoretical fruitfulness of this approach within log-
ical geometry. Furthermore, and even more importantly, by systematically link-
ing Aristotelian diagrams with Euler diagrams, we have taken an important next
step in charting the place of Aristotelian diagrams (and thus of logical geometry)
within the broader landscape of logical diagrams research.12 Since there exists
a vast amount of work on diagrammatic reasoning with Euler diagrams, estab-
lishing a bridge to Aristotelian diagrams will hopefully inspire new, analogous
work on diagrammatic reasoning with Aristotelian diagrams as well.

Thus far we have focused exclusively on (Aristotelian diagrams corresponding
to) Euler diagrams for two non-trivial setsA andB. This suggests several avenues
for further research; we finish this paper by mentioning three of them:

– What happens if we remove the restriction that the sets should be non-
trivial, in other words, if we allow that A = D or A = ∅ or B = D or B = ∅?
The Euler diagrams for these cases should be fairly straightforward, but
the corresponding Aristotelian diagrams will violate the condition (which is
usually considered to be fundamental in logical geometry) that Aristotelian
diagrams should only contain non-trivial elements.

– What about Aristotelian diagrams corresponding to Euler diagrams for more
than two sets? A special case is when these multiple sets constitute a par-
tition of the domain of discourse; it is known that in this special case, the
corresponding Aristotelian diagram will be a (strong) α-structure [5, 19];
however, there are currently no results yet about the general case.

– What about other types of diagrams, e.g. spider diagrams [15]? Can these
also be transformed into well-defined Aristotelian diagrams?
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