

Logical Geometry of the Rhombic Dodecahedron of Oppositions

3 squares embedded in (strong) Jacoby-Sesmat-Blanché hexagon (JSB)

3 squares embedded in Sherwood-Czezowski hexagon (SC)

4 hexagons embedded in Buridan octagon

Internal structure of bigger/3D Aristotelian diagrams ? Some initial results:

- 4 weak JSB-hexagons in logical cube (Moretti-Pellissier)
- 6 strong JSB hexagons in bigger 3D structure with 14 formulas/vertices
 - tetra-hexahedron (Sauriol)
 - tetra-icosahedron (Moretti-Pellissier)
 - nested tetrahedron (Lewis, Dubois-Prade)
 - rhombic dodecahedron = RDH (Smessaert-Demey) \rightsquigarrow joint work

Greater complexity of RDH \rightsquigarrow exhaustive analysis of internal structure ?? Main aim of this talk \rightsquigarrow tools and techniques for such an analysis

- examine larger substructures (octagon, decagon, dodecagon, ...)
- distinguish families of substructures (strong JSB, weak JSB, ...)
- establish the exhaustiveness of the typology

KULEU

- 2 The Rhombic Dodecahedron of Oppositions RDH
- 3 Sigma-structures
- 4 Families of Sigma-structures: the CO-perspective
- 5 Complementarities between families of Sigma-structures
- 6 Conclusion

Logical Geometry of RDH - H. Smessaert

2 The Rhombic Dodecahedron of Oppositions RDH

3 Sigma-structures

- 4 Families of Sigma-structures: the CO-perspective
 - 5 Complementarities between families of Sigma-structures

6 Conclusion

Logical Geometry of RDH - H. Smessaert

cube	+	octahedron	=	cuboctahedron	$\stackrel{dual}{\Longrightarrow}$	rhombic dodecahedron
Platonic 6 faces 8 vertices		Platonic 8 faces 6 vertices		Archimedean 14 faces 12 vertices		Catalan 12 faces 14 vertices

 $\Box p \lor \neg \Diamond p$

 $\Box p \land \neg \Box p$

14 vertices of RDH decorated with 14 bitstrings of length 4

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level 3	Propositional Logic	Modal Logic S5
$\Box p$	$p \wedge q$	1000	0111	$\neg (p \land q)$	$\neg \Box p$
$\neg \Box p \wedge p$	$\neg (p \rightarrow q)$	0100	1011	$p \rightarrow q$	$\Box p \lor \neg p$
$\Diamond p \land \neg p$	$\neg (p \leftarrow q)$	0010	1101	$p \leftarrow q$	$\neg \Diamond p \lor p$
$\neg \Diamond p$	$\neg (p \lor q)$	0001	1110	$p \lor q$	$\Diamond p$
Modal Logic S5	Propositional Logic	bitstrings level 2/0	bitstrings level 2/4	Propositional Logic	Modal Logic S5
p	р	1100	0011	$\neg p$	$\neg p$
$\Box p \lor (\Diamond p \land \neg p)$	q	1010	0101	$\neg q$	$\neg \Diamond p \lor (\neg \Box p \land p)$

0110

1111

 $\neg (p \leftrightarrow q)$

 $p \lor \neg p$

1001

0000

KU LEUVEN

 $\neg \Box p \land \Diamond p$

 $\Box p \lor \neg \Box p$

Logical Geometry of RDH - H. Smessaert

 $p \leftrightarrow q$

 $p \wedge \neg p$

 $cube = 4 \times L1 + 4 \times L3 / octahedron = 6 \times L2 / center = L0 + L4$

KU LEUVEN

Bitstrings have been used to encode

- **logical systems**: e.g. classical propositional logic, first-order logic, modal logic and public announcement logic
- lexical fields: e.g. comparative quantification, subjective quantification, color terms and set inclusion relations

Contradiction relation is visualized using the central symmetry of RDH:

- contradictory bitstrings (e.g. 1100 and 0011) occupy diametrically opposed vertices
- the negation of a bitstring is located at a maximal (Euclidean) distance from that bitstring.
- nearly all Aristotelian diagrams discussed in the literature observe central symmetry ("contradictories are diagonals")

KUL

2 The Rhombic Dodecahedron of Oppositions RDH

3 Sigma-structures

- 4 Families of Sigma-structures: the CO-perspective
- 5 Complementarities between families of Sigma-structures

6 Conclusion

Logical Geometry of RDH – H. Smessaert

Bitstrings/formulas come in **pairs of contradictories (PCD)** Key notion in describing RDH is σ_n -structure.

- A σ_n -structure consists of n PCDs
- A σ_n -structure is visualized by means of a centrally symmetrical diagram

• Examples	a square has 2 PCDs	\Rightarrow	σ_2 -structure
	a hexagon has 3 PCDs	\Rightarrow	σ_3 -structure
	an octagon has 4 PCDs	\Rightarrow	σ_4 -structure
	a cube has 4 PCDs	\Rightarrow	σ_4 -structure

Remarks

- 1 σ -structure may correspond to different σ -diagrams:
 - alternative 2D visualisations
 - 2D versus 3D representations
- All σ -structures have an even number of formulas/bitstrings
- ullet Nearly all Aristotelian diagrams in the literature are σ -structures

KULEUVE

Original question of Aristotelian subdiagrams ("How many smaller diagrams inside bigger diagram?") can now be reformulated in terms of σ -structures.

- For n ≤ k, the nummer of σ_n-structures embedded in a σ_k-structure can be calculated as the number of combinations of n PCDs out of k by means of the simple combinatorial formula:
 ^k_n = ^{k!}/_{n!(k-n)!}
- This combinatorial technique ~>> recover well-known results:
 - #squares (σ_2) inside a hexagon (σ_3) is $\binom{3}{2}$: $\frac{3!}{2!(1)!} = \frac{6}{2} = 3$
 - #hexagons (σ_3) inside octagon (σ_4) is $\binom{4}{3}$: $\frac{4!}{3!(1)!} = \frac{24}{6} = 4$
- This combinatorial technique \rightsquigarrow obtain new results for RDH:
 - RDH contains 14 vertices, hence 7 PCDs \rightsquigarrow RDH = $\sigma_7\text{-structure}$
 - Calculate the number of σ_n -structures inside a σ_7 -structure as the number of combinations of n PCDs out of 7: $\binom{7}{n} = \frac{7!}{n!(7-n)!}$

KU LEU

σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7
$\binom{7}{0}$	$\binom{7}{1}$	$\binom{7}{2}$	$\binom{7}{3}$	$\binom{7}{4}$	$\binom{7}{5}$	$\binom{7}{6}$	$\binom{7}{7}$
$\frac{7!}{0!(7)!}$	$\frac{7!}{1!(6)!}$	$\frac{7!}{2!(5)!}$	$\frac{7!}{3!(4)!}$	$\frac{7!}{4!(3)!}$	$\frac{7!}{5!(2)!}$	$\frac{7!}{6!(1)!}$	$\frac{7!}{7!(0)!}$
$\frac{5040}{1\times5040}$	$\frac{5040}{1\times720}$	$\frac{5040}{2\times120}$	$\frac{5040}{6\times24}$	$\frac{5040}{24\times6}$	$\frac{5040}{120\times 2}$	$\frac{5040}{720\times1}$	$\frac{5040}{5040\times1}$
1	7	21	35	35	21	7	1

- 3 squares in 1 JSB × 6 JSB in RDH = 18 squares in RDH. Remaining 3 ?? Unconnected/degenerate squares
- 6 strong JSB + 4 weak JSB = 10 hexagons in RDH. Remaining 25 ?? Sherwood-Czezowski. Others ? Unconnected4/12.
- symmetry/mirror image ? Complementarity: $\#\sigma_0 = \#\sigma_7, \ \#\sigma_1 = \#\sigma_6, \ \#\sigma_2 = \#\sigma_5, \ \#\sigma_3 = \#\sigma_4$

Logical Geometry of RDH – H. Smessaert

KU LEUV

2 The Rhombic Dodecahedron of Oppositions RDH

3 Sigma-structures

- 4 Families of Sigma-structures: the CO-perspective
- 5 Complementarities between families of Sigma-structures

6 Conclusion

Logical Geometry of RDH - H. Smessaert

rhombic dodecahedron (RDH)	=	cube (C)	+	octahedron (O)
σ_7	=	σ_4	+	σ_3
7 PCDs	=	4 PCDs L1-L3	+	3 PCDs L2-L2

Construct a principled typology of families of σ -structures inside RDH.

- $\sigma_n = n$ out of the 7 PCDs of RDH
- $\sigma_n = [k \text{ out of the } 4 \text{ PCDs of } C] + [\ell \text{ out of the } 3 \text{ PCDs of } O]$
- **CO-perspective**: every class of σ_n -structures can be subdivided into families of the form $C_k O_\ell$, for $0 \le k \le 4$; $0 \le \ell \le 3$ and $k + \ell = n$.
- For example, the cube C is C_4O_0 , and the octahedron O is C_0O_3 .
- The number of $C_k O_\ell$ -structures inside RDH $(C_4 O_3)$ can be calculated as $\binom{4}{k}\binom{3}{\ell}$.

KU LEL

KU LEUVEN

KU LEUVEN

Families of σ_3 -structures: the isomorphism perspective

• CO-perspective: no distinction strong JSB vs Sherwood-Czezowski

isomorphism perspective: no distinction strong JSB vs weak JSB

Logical Geometry of RDH – H. Smessaert

σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7
			C_0O_3	C_4O_0			
			1	1			
	C_1O_0	C_0O_2	C_3O_0	C_1O_3	C_4O_1	C_3O_3	
	4	3	4	4	3	4	
C_0O_0	C_0O_1	C_2O_0	C_2O_1a	C_2O_2a	C_2O_3	C_4O_2	C_4O_3
1	3	6	6	6	6	3	1
		C_1O_1	C_2O_1b	C_2O_2b	C_3O_2		
		12	12	12	12		
			C_1O_2	C_3O_1			
			12	12			
1	7	21	35	35	21	7	1

20

KU LEUVEN

- 2 The Rhombic Dodecahedron of Oppositions RDH
- 3 Sigma-structures
- 4 Families of Sigma-structures: the CO-perspective
- 5 Complementarities between families of Sigma-structures

6 Conclusion

Logical Geometry of RDH - H. Smessaert

Fundamental complementarity between σ -structures inside RDH

- $|\sigma_n| = |\sigma_{7-n}|$
- $|C_k O_\ell| = |C_{4-k} O_{3-\ell}|$

rhombicube

Logical Geometry of RDH - H. Smessaert

structure	subtype	Ν	subtype	structure
σ_0	C_0O_0	1	C_4O_3	σ_7
σ_1	C_1O_0	4	C_3O_3	σ_6
	C_0O_1	3	C_4O_2	
	C_0O_2	3	C_4O_1	
σ_2	C_2O_0	6	C_2O_3	σ_5
	C_1O_1	12	C_3O_2	
	C_0O_3	1	C_4O_0	
	C_3O_0	4	C_1O_3	
σ_3	C_2O_1a	6	C_2O_2a	σ_4
	C_2O_1b	12	C_2O_2b	
	C_1O_2	12	C_3O_1	

Logical Geometry of RDH – H. Smessaert

- 2 The Rhombic Dodecahedron of Oppositions RDH
- 3 Sigma-structures
- 4 Families of Sigma-structures: the CO-perspective
 - 5 Complementarities between families of Sigma-structures
- 6 Conclusion

Logical Geometry of RDH – H. Smessaert

Conclusion

- \rightsquigarrow The logical geometry of rhombic dodecahedron RDH
- \rightsquigarrow Typology of Aristotelian subdiagrams of RDH
- \rightsquigarrow Tools/techniques for exhaustive analysis of internal structure of RDH
 - define σ_n -structure = n out of the 7 PCDs of RDH
 - distinguish families of substructures = $C_k O_\ell$ -perspective: $\sigma_n = [k \text{ out of the } 4 \text{ PCDs of } C] + [\ell \text{ out of the } 3 \text{ PCDs of } O]$
 - ullet establish the exhaustiveness of the typology \rightsquigarrow complementarity
- \rightsquigarrow Frame of reference for classifying Aristotelian diagrams in the literature

KU LEU

Conclusion

σ_1	C_1O_0	Brown 1984
	C_0O_1	Demey 2012
	$C_0 O_2$	Brown 1984, Béziau 2012
σ_2	C_2O_0	Fitting & Mendelsohn 1998, McNamara 2010, Lenzen 2012
	C_1O_1	Luzeaux, Sallantin & Dartnell 2008, Moretti 2009
	$C_0 O_3$	Moretti 2009
	C_2O_1a	Sesmat 1951, Blanché 1966, Béziau 2012, Dubois & Prade 2013
σ_3	C_2O_1b	Czezowski 1955, Khomskii 2012, Chatti & Schang 2013
	C_1O_2	Seuren 2013, Seuren & Jaspers 2014, Smessaert & Demey 2014
	C_3O_0	Pellissier 2008, Moretti 2009, Moretti 2012
	C_1O_3	
	C_3O_1	
σ_4	C_2O_2b	Béziau 2003, Smessaert & Demey 2014
	C_2O_2a	Hughes 1987, Read 2012, Seuren 2012
	C_4O_0	Moretti 2009, Chatti & Schang 2013, Dubois & Prade 2013
	C_3O_2	Seuren & Jaspers 2014
σ_5	C_2O_3	
	C_4O_1	Blanché 1966, Joerden & Hruschka 1987, Wessels 2002
σ_6	C_4O_2	Béziau 2003, Moretti 2009, Moretti 2010
	C_3O_3	
σ_7	C_4O_3	Sauriol 1968, Moretti 2009, Smessaert 2009, Dubois & Prade 2013

Logical Geometry of RDH - H. Smessaert

Thank you!

More info: www.logicalgeometry.org

