KU LEUVEN

Logical Geometry of the Rhombic Dodecahedron of Oppositions

Hans Smessaert

Introduction: Aristotelian subdiagrams

3 squares embedded in (strong) Jacoby-Sesmat-Blanché hexagon (JSB)

3 squares embedded in Sherwood-Czezowski hexagon (SC)

Introduction: Aristotelian subdiagrams

4 hexagons embedded in Buridan octagon

Logical Geometry of RDH - H. Smessaert

Introduction: Aristotelian subdiagrams in RDH

Internal structure of bigger/3D Aristotelian diagrams ? Some initial results:

- 4 weak JSB-hexagons in logical cube (Moretti-Pellissier)
- 6 strong JSB hexagons in bigger 3D structure with 14 formulas/vertices
- tetra-hexahedron (Sauriol)
- tetra-icosahedron (Moretti-Pellissier)
- nested tetrahedron (Lewis, Dubois-Prade)
- rhombic dodecahedron $=$ RDH (Smessaert-Demey) \rightsquigarrow joint work

Greater complexity of RDH exhaustive analysis of internal structure ?? Main aim of this talk \rightsquigarrow tools and techniques for such an analysis

- examine larger substructures (octagon, decagon, dodecagon, ...)
- distinguish families of substructures (strong JSB, weak JSB, ...)
- establish the exhaustiveness of the typology

Structure of the talk

(1) Introduction
(2) The Rhombic Dodecahedron of Oppositions RDH
(3) Sigma-structures
(4) Families of Sigma-structures: the CO-perspective
(5) Complementarities between families of Sigma-structures
6) Conclusion

Structure of the talk

(1) Introduction

(2) The Rhombic Dodecahedron of Oppositions RDH

Rhombic Dodecahedron (RDH)

cube + octahedron $=$ cuboctahedron $\stackrel{\text { dual }}{\Longrightarrow}$

Platonic 6 faces
8 vertices

> Platonic
> 8 faces
> 6 vertices
Archimedean
14 faces
12 vertices

rhombic dodecahedron Catalan
12 faces
14 vertices

Bitstrings for RDH

14 vertices of RDH decorated with 14 bitstrings of length 4

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level3	Propositional Logic	Modal Logic S5
$\square \square p$	$p \wedge q$	1000	0111	$\neg(p \wedge q)$	$\neg \square p$
$\neg \square p \wedge p$	$\neg(p \neg q)$	0100	1011	$p \rightarrow q$	$\square p \vee \neg p$
$\diamond p \wedge \neg p$	$\neg(p-q)$	0010	1101	$p-q$	$\neg \diamond p \vee p$
$\neg \diamond p$	$\neg(p \vee q)$	0001	1110	$p \vee q$	$\diamond p$

Modal Logic S5	Propositional Logic	bitstrings level $2 / 0$	bitstrings level $2 / 4$	Propositional Logic	Modal Logic S5
p	p	1100	0011	$\neg p$	$\neg p$
$\square p \vee(\diamond p \wedge \neg p)$	q	1010	0101	$\neg q$	$\neg \diamond p \vee(\neg \square p \wedge p)$
$\square p \vee \neg \diamond p$	$p \sim q$	1001	0110	$\neg(p \neg q)$	$\neg \square p \wedge \diamond p$
$\square p \wedge \neg \square p$	$p \wedge \neg p$	0000	1111	$p \vee \neg p$	$\square p \vee \neg \square p$

cube $=4 \times \mathrm{L} 1+4 \times \mathrm{L} 3 /$ octahedron $=6 \times \mathrm{L} 2 /$ center $=\mathrm{L} 0+\mathrm{L} 4$

Bitstrings have been used to encode

- logical systems: e.g. classical propositional logic, first-order logic, modal logic and public announcement logic
- lexical fields: e.g. comparative quantification, subjective quantification, color terms and set inclusion relations

Contradiction relation is visualized using the central symmetry of RDH:

- contradictory bitstrings (e.g. 1100 and 0011) occupy diametrically opposed vertices
- the negation of a bitstring is located at a maximal (Euclidean) distance from that bitstring.
- nearly all Aristotelian diagrams discussed in the literature observe central symmetry ("contradictories are diagonals")

Structure of the talk

(2) The Rhombic Dodecahedron of Oppositions RDH

(3) Sigma-structures

(4) Families of Sigma-structures: the CO-perspective

(5) Complementarities between families of Sigma-structures
(6) Conclusion

Logical Geometry of RDH - H. Smessaert
KULEUVEN

Bitstrings/formulas come in pairs of contradictories (PCD) Key notion in describing RDH is σ_{n}-structure.

- A σ_{n}-structure consists of n PCDs
- A σ_{n}-structure is visualized by means of a centrally symmetrical diagram
- Examples a square has $2 \mathrm{PCDs} \Rightarrow \sigma_{2}$-structure a hexagon has 3 PCDs $\Rightarrow \sigma_{3}$-structure an octagon has $4 \mathrm{PCDs} \Rightarrow \sigma_{4}$-structure a cube has 4 PCDs $\quad \Rightarrow \quad \sigma_{4}$-structure
Remarks
- 1σ-structure may correspond to different σ-diagrams:
- alternative 2D visualisations
- 2D versus 3D representations
- All σ-structures have an even number of formulas/bitstrings
- Nearly all Aristotelian diagrams in the literature are σ-structures

Original question of Aristotelian subdiagrams ("How many smaller diagrams inside bigger diagram?") can now be reformulated in terms of σ-structures.

- For $\mathrm{n} \leq \mathrm{k}$, the nummer of σ_{n}-structures embedded in a σ_{k}-structure can be calculated as the number of combinations of n PCDs out of k by means of the simple combinatorial formula: $\binom{k}{n}=\frac{k!}{n!(k-n)!}$
- This combinatorial technique \rightsquigarrow recover well-known results:
- \#squares $\left(\sigma_{2}\right)$ inside a hexagon $\left(\sigma_{3}\right)$ is $\binom{3}{2}: \frac{3!}{2!(1)!}=\frac{6}{2}=3$
- \#hexagons $\left(\sigma_{3}\right)$ inside octagon $\left(\sigma_{4}\right)$ is $\binom{4}{3}: \frac{4!}{3!(1)!}=\frac{24}{6}=4$
- This combinatorial technique \rightsquigarrow obtain new results for RDH:
- RDH contains 14 vertices, hence 7 PCDs $\rightsquigarrow \mathrm{RDH}=\sigma_{7}$-structure
- Calculate the number of σ_{n}-structures inside a σ_{7}-structure as the number of combinations of n PCDs out of $7:\binom{7}{n}=\frac{7!}{n!(7-n)!}$

σ_{0}	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}	σ_{7}
$\binom{7}{0}$	$\binom{7}{1}$	$\binom{7}{2}$	$\binom{7}{3}$	$\binom{7}{4}$	$\binom{7}{5}$	$\binom{7}{6}$	$\binom{7}{7}$
$\frac{7!}{0!(7)!}$	$\frac{7!}{1!(6)!}$	$\frac{7!}{2!(5)!}$	$\frac{7!}{3!(4)!}$	$\frac{7!}{4!(3)!}$	$\frac{7!}{5!(2)!}$	$\frac{7!}{6!(1)!}$	$\frac{7!}{7!(0)!}$
$\frac{5040}{1 \times 5040}$	$\frac{5040}{1 \times 720}$	$\frac{5040}{2 \times 120}$	$\frac{5040}{6 \times 24}$	$\frac{5040}{24 \times 6}$	$\frac{5040}{120 \times 2}$	$\frac{5040}{720 \times 1}$	$\frac{5040}{5040 \times 1}$
1	7	21	35	35	21	7	1

- 3 squares in $1 \mathrm{JSB} \times 6 \mathrm{JSB}$ in $\mathrm{RDH}=18$ squares in RDH .

Remaining 3 ?? Unconnected/degenerate squares

- 6 strong JSB +4 weak JSB $=10$ hexagons in RDH.

Remaining 25 ?? Sherwood-Czezowski. Others ? Unconnected4/12.

- symmetry/mirror image ? Complementarity:
$\# \sigma_{0}=\# \sigma_{7}, \# \sigma_{1}=\# \sigma_{6}, \# \sigma_{2}=\# \sigma_{5}, \# \sigma_{3}=\# \sigma_{4}$

Structure of the talk

(2) The Rhombic Dodecahedron of Oppositions RDH
(3) Sigma-structures
(4) Families of Sigma-structures: the CO-perspective
(5) Complementarities between families of Sigma-structures
(6) Conclusion

Logical Geometry of RDH - H. Smessaert

Families of σ_{n}-structures: the CO -perspective

rhombic dodecahedron (RDH)	$=$	cube (C)	+	octahedron (O)
σ_{7}	$=$	σ_{4}	+	σ_{3}
7 PCDs	$=$	$4 \mathrm{PCDs} \mathrm{L} 1-\mathrm{L} 3$	+	$3 \mathrm{PCDs} \mathrm{L} 2-\mathrm{L} 2$

Construct a principled typology of families of σ-structures inside RDH.

- $\sigma_{n}=n$ out of the 7 PCDs of RDH
- $\sigma_{n}=[k$ out of the 4 PCDs of $C]+[\ell$ out of the 3 PCDs of $O]$
- CO-perspective: every class of σ_{n}-structures can be subdivided into families of the form $C_{k} O_{\ell}$, for $0 \leq k \leq 4 ; 0 \leq \ell \leq 3$ and $k+\ell=n$.
- For example, the cube C is $\mathrm{C}_{4} O_{0}$, and the octahedron O is $\mathrm{C}_{0} O_{3}$.
- The number of $C_{k} O_{\ell}$-structures inside RDH $\left(C_{4} O_{3}\right)$ can be calculated as $\binom{4}{k}\binom{3}{\ell}$.

σ_{2}	$=$	$C_{2} O_{0}$	+	$C_{1} O_{1}$	+	$C_{0} O_{2}$
$\binom{7}{2}$		$\binom{4}{2}\binom{3}{0}$		$\binom{4}{1}\binom{3}{1}$		
21	$=$	6	+	12	+	3

squares	classical	classical	degenerated
	balanced	unbalanced	(balanced)
$2 \times L 1 / 2 \times \mathrm{L} 3$	$1 \times L 1 / 2 \times \mathrm{L} 2 / 1 \times \mathrm{L} 3$	$4 \times \mathrm{L} 2$	

σ_{3}	$=$	$\mathrm{C}_{0} \mathrm{O}_{3}$	+	$\mathrm{C}_{3} \mathrm{O}_{0}$	+	$\mathrm{C}_{1} \mathrm{O}_{2}$		$\mathrm{C}_{2} \mathrm{O}_{1}$
$\binom{7}{3}$		$\binom{4}{0}\binom{3}{3}$		$\binom{4}{3}\binom{3}{0}$		$\binom{4}{1}\binom{3}{2}$		$\binom{4}{2}\binom{3}{1}$
35	$=$	1	+	4		12	+	18

hexagons	degener.	weak	degener.	strong JSB
	U12	JSB	U4	Sher-Czez

Families of σ_{3}-structures: the isomorphism perspective

- CO-perspective: no distinction strong JSB vs Sherwood-Czezowski
- isomorphism perspective: no distinction strong JSB vs weak JSB

σ_{0}	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}	σ_{7}
			$C_{0} O_{3}$	$C_{4} O_{0}$			
			1	1			
	$C_{1} O_{0}$	$C_{0} O_{2}$	$C_{3} O_{0}$	$C_{1} O_{3}$	$C_{4} O_{1}$	$C_{3} O_{3}$	
	4	3	4	4	3	4	
$C_{0} O_{0}$	$C_{0} O_{1}$	$C_{2} O_{0}$	$C_{2} O_{1} a$	$C_{2} O_{2} a$	$C_{2} O_{3}$	$C_{4} O_{2}$	$C_{4} O_{3}$
1	3	6	6	6	6	3	1
		$C_{1} O_{1}$	$C_{2} O_{1} b$	$C_{2} O_{2} b$	$C_{3} O_{2}$		
		12	12	12	12		
			$C_{1} O_{2}$	$C_{3} O_{1}$			
			12	12			
1	7	21	35	35	21	7	1

Structure of the talk

(5) Complementarities between families of Sigma-structures

Complementarities between families of σ_{n}-structures

Fundamental complementarity between σ-structures inside RDH

- $\left|\sigma_{n}\right|=\left|\sigma_{7-n}\right|$
- $\left|C_{k} O_{\ell}\right|=\left|C_{4-k} O_{3-\ell}\right|$
$\mathrm{C}_{4} \mathrm{O}_{0}$

$\mathrm{C}_{0} \mathrm{O}_{3}$

$\mathrm{C}_{2} \mathrm{O}_{1} a$
strong JSB
hexagon
$\mathrm{C}_{2} \mathrm{O}_{2} a$
Buridan
octagon

rhombicube

$$
\mathrm{C}_{4} \mathrm{O}_{3}
$$

rhombic dodecahedron

structure	subtype	N	subtype	structure
σ_{0}	$\mathrm{C}_{0} O_{0}$	1	$C_{4} O_{3}$	σ_{7}
σ_{1}	$C_{1} O_{0}$	4	$C_{3} O_{3}$	σ_{6}
	$C_{0} O_{1}$	3	$C_{4} O_{2}$	
σ_{2}	$C_{0} O_{2}$	3	$C_{4} O_{1}$	
	$C_{2} O_{0}$	6	$C_{2} O_{3}$	σ_{5}
	$C_{1} O_{1}$	12	$C_{3} O_{2}$	
	$C_{0} O_{3}$	1	$C_{4} O_{0}$	
	$C_{3} O_{0}$	4	$C_{1} O_{3}$	
	$C_{2} O_{1} a$	6	$C_{2} O_{2} a$	σ_{4}
	$C_{2} O_{1} b$	12	$C_{2} O_{2} b$	
	$C_{1} O_{2}$	12	$C_{3} O_{1}$	

Structure of the talk

(2) The Rhombic Dodecahedron of Oppositions RDH
(3) Sigma-structures
(4) Families of Sigma-structures: the CO-perspective
(5) Complementarities between families of Sigma-structures

6 Conclusion

Logical Geometry of RDH - H. Smessaert
\rightsquigarrow The logical geometry of rhombic dodecahedron RDH
\rightsquigarrow Typology of Aristotelian subdiagrams of RDH
\rightsquigarrow Tools/techniques for exhaustive analysis of internal structure of RDH

- define σ_{n}-structure $=n$ out of the 7 PCDs of RDH
- distinguish families of substructures $=C_{k} O_{\ell}$-perspective: $\sigma_{n}=[k$ out of the 4 PCDs of $C]+[\ell$ out of the 3 PCDs of $O]$
- establish the exhaustiveness of the typology \rightsquigarrow complementarity
\rightsquigarrow Frame of reference for classifying Aristotelian diagrams in the literature

Conclusion

σ_{1}	$\mathrm{C}_{1} \mathrm{O}_{0}$	Brown 1984
	$\mathrm{C}_{0} \mathrm{O}_{1}$	Demey 2012
σ_{2}	$\mathrm{Co}_{0} \mathrm{O}_{2}$	Brown 1984, Béziau 2012
	$\mathrm{C}_{2} \mathrm{O}_{0}$	Fitting \& Mendelsohn 1998, McNamara 2010, Lenzen 2012
	$\mathrm{C}_{1} \mathrm{O}_{1}$	Luzeaux, Sallantin \& Dartnell 2008, Moretti 2009
σ_{3}	$\mathrm{C}_{0} \mathrm{O}_{3}$	Moretti 2009
	$\mathrm{C}_{2} \mathrm{O}_{1} \mathrm{a}$	Sesmat 1951, Blanché 1966, Béziau 2012, Dubois \& Prade 2013
	$\mathrm{C}_{2} \mathrm{O}_{1} \mathrm{~b}$	Czezowski 1955, Khomskii 2012, Chatti \& Schang 2013
	$\mathrm{C}_{1} \mathrm{O}_{2}$	Seuren 2013, Seuren \& Jaspers 2014, Smessaert \& Demey 2014
	$\mathrm{C}_{3} \mathrm{O}_{0}$	Pellissier 2008, Moretti 2009, Moretti 2012
σ_{4}	$\mathrm{C}_{1} \mathrm{O}_{3}$	
	$\mathrm{C}_{3} \mathrm{O}_{1}$	
	$\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{~b}$	Béziau 2003, Smessaert \& Demey 2014
	$\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{a}$	Hughes 1987, Read 2012, Seuren 2012
	$\mathrm{C}_{4} \mathrm{O}_{0}$	Moretti 2009, Chatti \& Schang 2013, Dubois \& Prade 2013
σ_{5}	$\mathrm{C}_{3} \mathrm{O}_{2}$	Seuren \& Jaspers 2014
	$\mathrm{C}_{2} \mathrm{O}_{3}$	
	$\mathrm{C}_{4} \mathrm{O}_{1}$	Blanché 1966, Joerden \& Hruschka 1987, Wessels 2002
σ_{6}	$\mathrm{C}_{4} \mathrm{O}_{2}$	Béziau 2003, Moretti 2009, Moretti 2010
	$\mathrm{C}_{3} \mathrm{O}_{3}$	
σ_{7}	$\mathrm{C}_{4} \mathrm{O}_{3}$	Sauriol 1968, Moretti 2009, Smessaert 2009, Dubois \& Prade 2013

Thank you!

More info: www.logicalgeometry.org

