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Broader context 4

logical geometry

historical and contemporary applications
of Aristotelian diagrams
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Russell on Aristotle and his logic 5

“ever since the beginning of the seventeenth century, almost every
serious intellectual advance has had to begin with an attack

on some Aristotelian doctrine; in logic, this is still true at the present day”
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Russell’s theory of definite descriptions 6

definite descriptions in natural language:
the president of the United States
the man standing over there
the so-and-so

they can occur in
subject position e.g. The president was diagnosed with Covid-19.
predicate position e.g. Joe Biden is currently the president.

Russell’s quantificational analysis of ‘the A is B’

∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Bx

)
Neale’s restricted quantifier notation

[the x : Ax]Bx
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Russell’s theory of definite descriptions 7

[the x : Ax]Bx ≡FOL (ex) ∧ (un) ∧ (uv)

(ex) ∃xAx there exists at least one A
(un) ∀x∀y((Ax ∧Ay) → x = y) there exists at most one A
(uv) ∀x(Ax → Bx) all As are B

much of the subsequent literature on Russell’s quantificational theory of
definite descriptions has focused on one of these three conditions
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Russell’s theory of definite descriptions 8

[the x : Ax]Bx ≡FOL (ex) ∧ (un) ∧ (uv)

(ex) ∃xAx there exists at least one A
(un) ∀x∀y((Ax ∧Ay) → x = y) there exists at most one A
(uv) ∀x(Ax → Bx) all As are B

much of the subsequent literature on Russell’s quantificational theory of
definite descriptions has focused on one of these three conditions

what is the linguistic status of (ex)?

Russell: (ex) is part of the truth conditions of ‘the A is B’
⇒ if (ex) is false, then ‘the A is B’ is false

Strawson: (ex) is a presupposition of ‘the A is B’
⇒ if (ex) is false, then ‘the A is B’ does not have a truth value at all
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Russell’s theory of definite descriptions 9

[the x : Ax]Bx ≡FOL (ex) ∧ (un) ∧ (uv)

(ex) ∃xAx there exists at least one A
(un) ∀x∀y((Ax ∧Ay) → x = y) there exists at most one A
(uv) ∀x(Ax → Bx) all As are B

much of the subsequent literature on Russell’s quantificational theory of
definite descriptions has focused on one of these three conditions

the problem of incomplete definite descriptions (for which (un) fails)
e.g. the book is on the shelf ⇒ there is at most one book in the universe

refinements and alternatives:
ellipsis theories (Vendler)
quantifier domain restriction theories (Stanley and Szabó)
pragmatic theories (Heim, Szabó)
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Russell’s theory of definite descriptions 10

[the x : Ax]Bx ≡FOL (ex) ∧ (un) ∧ (uv)

(ex) ∃xAx there exists at least one A
(un) ∀x∀y((Ax ∧Ay) → x = y) there exists at most one A
(uv) ∀x(Ax → Bx) all As are B

much of the subsequent literature on Russell’s quantificational theory of
definite descriptions has focused on one of these three conditions

what about non-singular definite descriptions?
plurals e.g. The wives of King Henry VIII were pale.
mass nouns e.g. The water in the Dead Sea is very salty.

such descriptions also satisfy a version of (uv) (Sharvy, Brogaard)
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An Aristotelian square for definite descriptions 11

Russell: what is the negation of ‘the A is B’?
law of excluded middle ⇒ ‘the A is B’ is true or ‘the A is not B’ is true
but if there are no As, then both statements seem to be false

Russell: ‘the A is not B’ is ambiguous (scope)

¬∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Bx

)
¬[the x : Ax]Bx

∃x
(
Ax ∧ ∀y(Ay → y = x) ∧ ¬Bx

)
[the x : Ax]¬Bx

first interpretation:
Boolean negation of ‘the A is B’
if there are no As, then [the x : Ax]Bx is false, ¬[the x : Ax]Bx is true

second interpretation:
if there are no As, then [the x : Ax]Bx and [the x : Ax]¬Bx are false
not the Boolean negation of ‘the A is B’
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An Aristotelian square for definite descriptions 12

crucial insight: the two interpretations of ‘the A is not B’ distinguished
by Russell stand in different Aristotelian relations to ‘the A is B’

[the x : Ax]Bx and ¬[the x : Ax]Bx are FOL-contradictory
[the x : Ax]Bx and [the x : Ax]¬Bx are FOL-contrary

cf. Haack (1978), Speranza and Horn (2010, 2012), Martin (2016)

natural move: consider a fourth formula (with two negations)
¬∃x

(
Ax ∧ ∀y(Ay → y = x) ∧Bx

)
¬[the x : Ax]Bx

¬∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Bx

)
¬[the x : Ax]Bx

¬∃x
(
Ax ∧ ∀y(Ay → y = x) ∧ ¬Bx

)
¬[the x : Ax]¬Bx

¬∃x
(
Ax ∧ ∀y(Ay → y = x) ∧ ¬Bx

)
¬[the x : Ax]¬Bx

consider the fragment Fdd containing these 4 formulas

(Fdd,FOL) is a classical square
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An Aristotelian square for definite descriptions 13

this is an Aristotelian square
but also a duality square � lecture 2
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An Aristotelian square for definite descriptions 14

this square is fully defined in ‘ordinary’ FOL ⇒ acceptable for Russell

summarizes Russell’s solution to puzzle on law of excluded middle

interesting new formula: ¬[the x : Ax]¬Bx

expresses a weak version of ‘the A is B’
¬[the x : Ax]¬Bx ≡FOL [(ex) ∧ (un)] → [the x : Ax]Bx

▶ if there is exactly one A,
[the x : Ax]Bx and ¬[the x : Ax]¬Bx always have the same truth value

▶ in all other cases,
[the x : Ax]Bx is always false, whereas ¬[the x : Ax]¬Bx is always true

self-predication principles: what is the logical status of ‘the A is A’?
▶ [the x : Ax]Ax is not a FOL-tautology
▶ ¬[the x : Ax]¬Ax is a FOL-tautology
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Boolean closure of the definite description square 15

the Aristotelian square for definite descriptions is not Boolean closed
its Boolean closure is a JSB hexagon
importance of the (ex)- and (un)-conditions
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Bitstring analysis 16

the definite description formulas induce the partition
ΠFOL(Fdd) := {α1, α2, α3}

α1 := [the x : Ax]Bx
α2 := [the x : Ax]¬Bx
α3 := ¬[(ex) ∧ (un)]

example bitstring representations:
[the x : Ax]Bx ≡FOL α1 ⇝ gets represented as 100
¬[the x : Ax]¬Bx ≡FOL α1 ∨ α3 ⇝ gets represented as 101

logical perspective: the Boolean closure of the square/hexagon has
23 − 2 = 6 contingent formulas

conceptual/linguistic perspective:
recursive partitioning of logical space
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Bitstring analysis 17
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Linguistic relevance of the bitstring analysis 18

view ΠFOL(Fdd) as the result of a process of recursively
partitioning and restricting logical space (Seuren, Jaspers, Roelandt)

divide the logical universe: (ex) ∧ (un) vs. ¬[(ex) ∧ (un)]
focus on the logical subuniverse defined by (ex) ∧ (un)
recursively divide this subuniverse: [the x : Ax]Bx vs. [the x : Ax]¬Bx
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Linguistic relevance of the bitstring analysis 19

another look at the ambiguity pointed out by Russell
‘the A is B’ unambiguously corresponds to [the x : Ax]Bx = 100
relative to the entire universe, its negation is ¬[the x : Ax]Bx = 011
relative to the subuniverse (110), its negation is [the x : Ax]¬Bx = 010

⇒ Russell’s two interpretations of ‘the A is not B’ correspond to
⇒negations of ‘the A is B’ relative to two different universes
⇒(semantic instead of syntactic characterization)

Seuren and Jaspers’s (2014) defeasible Principle of Complement
Selection: “Natural complement selection is primarily relative to the
proximate subuniverse, but there are overriding factors.”

overriding factors: intonation, additional linguistic material (Horn 1989)
the largest prime is not even; in fact, there doesn’t exist a largest prime
the prime divisor of 30 is not even; in fact, 30 has multiple prime divisors
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The categorical statements 20

consider the fragment Fcat of categorical statements from syllogistics:
A all As are B ∀x(Ax → Bx)
I some As are B ∃x(Ax ∧Bx)
E no As are B ∀x(Ax → ¬Bx)
O some As are not B ∃x(Ax ∧ ¬Bx)

already implicit in the definite description formulas

¬[the x : Ax]¬Bx ≡FOL (ex) ∧ (un) ∧ (uv)
¬[the x : Ax]¬Bx ≡FOL ¬(ex) ∨ ¬(un) ∨ ¬(uv)
¬[the x : Ax]¬Bx ≡FOL (ex) ∧ (un) ∧ (uv∗)
¬[the x : Ax]¬Bx ≡FOL ¬(ex) ∨ ¬(un) ∨ ¬(uv∗)

¬(uv) ≡FOL ∀x(Ax → Bx) = A
¬(uv) ≡FOL ∃x(Ax ∧ ¬Bx) = O
¬(uv∗) ≡FOL ∀x(Ax → ¬Bx) = E
¬(uv∗) ≡FOL ∃x(Ax ∧Bx) = I
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Bitstring analysis and degenerate square 21

first-order logic (FOL) has no existential import

Fcat induces the partition ΠFOL(Fcat) = {β1, β2, β3, β4}:
β1 := ∃xAx ∧ ∀x(Ax → Bx)
β2 := ∃x(Ax ∧Bx) ∧ ∃x(Ax ∧ ¬Bx)
β3 := ∃xAx ∧ ∀x(Ax → ¬Bx)

β4 := ¬∃xAx (recursive partitioning)

in FOL, the categorical statements constitute a degenerate square
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Definite descriptions and categorical statements 22

there is a subalternation from [the x : Ax]Bx to the A-statement

there is a subalternation from [the x : Ax]Bx to the I-statement

and so on. . .

summary:
the interaction between the definite description formulas and the

categorical statements gives rise to a Buridan octagon
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Buridan octagon 23
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Bitstring analysis 24

the definite descriptions induce the 3-partition ΠFOL(Fdd)

the categorical statements induce the 4-partition ΠFOL(Fcat)

⇒ together, Fddcat := Fdd ∪ Fcat induces the 6-partition
⇒ ΠFOL(Fddcat) = ΠFOL(Fdd) ∧FOL ΠFOL(Fcat)

γ1 := ∃x∃y(Ax ∧Ay ∧ x ̸= y) ∧ ∀x(Ax → Bx)
γ2 := ∃x(Ax ∧Bx) ∧ ∃x(Ax ∧ ¬Bx)
γ3 := ∃x∃y(Ax ∧Ay ∧ x ̸= y) ∧ ∀x(Ax → ¬Bx)
γ4 := [the x : Ax]Bx
γ5 := [the x : Ax]¬Bx
γ6 := ¬∃xAx

ΠFOL(Fddcat) is a refinement of ΠFOL(Fdd)
⇒ γ4 = α1 and γ5 = α2, while γ1 ∨ γ2 ∨ γ3 ∨ γ6 ≡FOL α3

ΠFOL(Fddcat) is a refinement of ΠFOL(Fcat)
⇒ γ2 = β2 and γ6 = β4, while γ1 ∨ γ4 ≡FOL β1 and γ3 ∨ γ5 ≡FOL β3
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Bitstring analysis 25

ΠFOL(Fddcat) allows us to encode every formula of the Buridan octagon
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Bitstring analysis 26

ΠFOL(Fddcat) is ordered along two semi-independent dimensions
the cardinality of (the extension of) A
the proportion of As that are B

semi-independent: higher cardinalities allow for
semi-independent: more fine-grained proportionality distinctions

visual perspective on the refinement of partitions
ΠFOL(Fddcat) is a refinement of ΠFOL(Fdd)
α1 ≡FOL γ4 and α2 ≡FOL γ5 and α3 ≡FOL γ1 ∨ γ2 ∨ γ3 ∨ γ6
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Bitstring analysis 27
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Bitstring analysis 28
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the cardinality of (the extension of) A
the proportion of As that are B

semi-independent: higher cardinalities allow for
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Bitstring analysis 29

ΠFOL(Fddcat) is ordered along two semi-independent dimensions
the cardinality of (the extension of) A
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semi-independent: higher cardinalities allow for
semi-independent: more fine-grained proportionality distinctions
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Bitstring analysis 30

ΠFOL(Fddcat) is ordered along two semi-independent dimensions
the cardinality of (the extension of) A
the proportion of As that are B

semi-independent: higher cardinalities allow for
semi-independent: more fine-grained proportionality distinctions

ongoing work on linguistic aspects:
plausible partitioning process?
split the ‘≥ 2’-region into ‘≥ 3’- and ‘= 2’-subregions (‘both’, ‘neither’)
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A related octagon 31

recent work on existential import (Seuren, Chatti and Schang, Read)

for every categorical statement φ ∈ Fcat, define
variant φimp! that explicitly has existential import ∃xAx ∧ φ
variant φimp? that explicitly lacks existential import ∃xAx → φ

Aimp? ≡FOL ∀x(Ax → Bx) ≡FOL ¬(uv)
Iimp! ≡FOL ∃x(Ax ∧Bx) ≡FOL ¬(uv∗)
Eimp? ≡FOL ∀x(Ax → ¬Bx) ≡FOL ¬(uv∗)
Oimp! ≡FOL ∃x(Ax ∧ ¬Bx) ≡FOL ¬(uv)

Aimp! ≡FOL ∃xAx ∧ ∀x(Ax → Bx) ≡FOL ¬(ex) ∧ ¬(uv)
Iimp? ≡FOL ∃xAx → ∃x(Ax ∧Bx) ≡FOL ¬(ex) ∨ ¬(uv∗)
Eimp! ≡FOL ∃xAx ∧ ∀x(Ax → ¬Bx) ≡FOL ¬(ex) ∧ ¬(uv∗)
Oimp? ≡FOL ∃xAx → ∃x(Ax ∧ ¬Bx) ≡FOL ¬(ex) ∨ ¬(uv)

F?!
cat := {φimp?, φimp! | φ ∈ Fcat}
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A related octagon 32

Chatti and Schang’s F?!
cat is closely related to our Fddcat and Fcat

(F?!
cat,FOL) is a Buridan octagon, just like (Fddcat,FOL)

ΠFOL(F?!
cat) = {Aimp!, Iimp! ∧ Oimp!,Eimp!,¬∃xAx} = ΠFOL(Fcat)
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A related octagon 33

Buridan octagon (Fddcat,FOL)

induces the partition ΠFOL(Fddcat), with 6 anchor formulas
¬[the x : Ax]¬Bx ̸≡FOL A ∧ I (000100 ̸= 100101 ∧ 110100)
¬[the x : Ax]¬Bx ̸≡FOL A ∨ I (111101 ̸= 100101 ∨ 110100)

Buridan octagon (F?!
cat,FOL)

induces the partition ΠFOL(Fcat), with 4 anchor formulas
Aimp! ≡FOL Aimp? ∧ Iimp! (1000 = 1001 ∧ 1100)
Iimp? ≡FOL Aimp? ∨ Iimp! (1101 = 1001 ∧ 1100)

summary:
one and the same Aristotelian family (Buridan octagons)
different Boolean subtypes � lecture 4

Introduction to Logical Geometry – Part 5



The role of existential import 34

until now: only worked in ordinary first-order logic (FOL)
Chatti and Schang: deal with existential import by adding (¬)∃xAx as
conjunct/disjunct to the categorical statements

alternative approach:
existential import ̸= property of individual formulas
existential import = property of underlying logical system

introduce new logical system SYL:
SYL = FOL + ∃xAx
interpreted on FOL-models ⟨D, I⟩ such that I(A) ̸= ∅
analogy with modal logic:
▶ KD = K + ♢⊤
▶ interpreted on serial frames,

i.e. K-frames ⟨W,R⟩ such that R[w] ̸= ∅ (for all w ∈ W )
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The role of existential import 35

move from FOL to SYL

influence on the categorical statements:
e.g. A and E are unconnected in FOL, but become contrary in SYL, etc.
the degen. square (Fcat,FOL) turns into a classical square (Fcat,SYL)

no influence on the definite description formulas:
e.g. [the x : Ax]Bx and [the x : Ax]¬Bx are contrary in FOL,
and remain so in SYL
the classical square (Fdd,FOL) remains a classical square (Fdd,SYL)

no influence on the interaction between definite descriptions and
categorical statements:

e.g. subalternation from [the x : Ax]Bx to A and to I in FOL,
and this remains so in SYL

from Buridan octagon (Fddcat,FOL) to Lenzen octagon (Fddcat,SYL)
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Lenzen octagon 36
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Bitstring analysis 37

which partition ΠSYL(Fddcat) is induced?

SYL is a stronger logical system than FOL
consider the anchor formula ¬∃xAx = γ6 ∈ ΠFOL(Fddcat):
FOL-consistent, but SYL-inconsistent
ΠSYL(Fddcat) = ΠFOL(Fddcat)− {γ6}

deleting the sixth bit position ⇒ unified perspective on all changes:

A (100101) and E (001011) go from FOL-unconnected to SYL-contrary
I (110100) and O (011010) go from FOL-unconnected to SYL-subcontr.
A (100101) and I (110100) go from FOL-unconnected to SYL-subaltern
[the x : Ax]Bx (000100) and [the x : Ax]Bx (000010) are FOL-contrary,
and remain so in SYL
[the x : Ax]Bx (000100) and A (100101) are FOL-subaltern,
and remain so in SYL
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The role of uniqueness 38

(ex) and (un) play complementary roles in Russell’s theory

introduce new logical system SYL∗

SYL∗ = FOL + ∀x∀y((Ax ∧Ay) → x = y)
interpreted on FOL-models ⟨D, I⟩ such that |I(A)| ≤ 1

move from FOL to SYL∗

no influence on the definite description formulas
e.g. [the x : Ax]Bx and [the x : Ax]¬Bx are contrary in FOL,
and remain so in SYL∗

the classical square (Fdd,FOL) remains a classical square (Fdd,SYL
∗)

influence on the categorical statements:
e.g. A and E are unconnected in FOL, but become subcontrary in SYL∗

the degen. square (Fcat,FOL) turns into a classical square (Fcat,SYL
∗)

note: this classical square is ‘flipped upside down’ !
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Flipped classical square 39

example: take A to be the predicate ‘monarch of country C’
then always |I(A)| ≤ 1

if C is a monarchy, then |I(A)| = 1
if C is a republic, then |I(A)| = 0
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The role of uniqueness 40

move from FOL to SYL*

influence on the interaction between definite descriptions and
categorical statements

e.g. [the x : Ax]Bx and the E-statement go from FOL-contrary to
SYL*-contradictory
e.g. in FOL there is a subalternation from [the x : Ax]Bx to the
I-statement, but in SYL* they are logically equivalent to each other

pairwise collapse of dd. formulas and categorical statements:
¬[the x : Ax]Bx ≡SYL∗ I = ∃x(Ax ∧Bx)
¬[the x : Ax]Bx ≡SYL∗ E = ∀x(Ax → ¬Bx)
¬[the x : Ax]¬Bx ≡SYL∗ O = ∃x(Ax ∧ ¬Bx)
¬[the x : Ax]¬Bx ≡SYL∗ A = ∀x(Ax → Bx)

from Buridan octagon (Fddcat,FOL)
to collapsed (flipped) classical square (Fddcat, SYL

∗)
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Collapsed flipped classical square 41
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Bitstring analysis 42

an elementary calculation yields the partition ΠSYL∗(Fddcat)
= {∃xAx ∧ ∀x(Ax → Bx),∃xAx ∧ ∀x(Ax → ¬Bx),¬∃xAx}

ΠSYL∗(Fddcat) = ΠFOL(Fddcat)− {γ1, γ2, γ3} (up to ≡SYL∗)
SYL* is a stronger logical system than FOL
γ1, γ2, γ3 are FOL-consistent, but SYL*-inconsistent

ΠSYL∗(Fddcat) = ΠFOL(Fdd) (up to ≡SYL∗)
ΠFOL(Fdd) is the partition for the dd. square in FOL
moving from FOL to SYL* did not change this square
but did cause it to coincide with the categorical statement square

ΠSYL∗(Fddcat) = ΠFOL(Fcat)− {β2} (up to ≡SYL∗)
ΠFOL(Fcat) is the partition for the cat. statement square in FOL
SYL* is stronger than FOL; β2 is FOL-consistent, but SYL*-inconsistent
moving from FOL to SYL* triggered change from degen. square to
(flipped) classical square, which coincides with the dd. square
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Summary of the case study 43

Aristotelian diagrams for Russell’s theory of definite descriptions
classical square, JSB hexagon, Buridan octagon. . .
the formula ¬[the x : Ax]¬Bx and its interpretation,
negations of [the x : Ax]Bx relative to different subuniverses. . .

phenomena and techniques studied in logical geometry
bitstring analysis, Boolean closure. . .
Boolean subtypes, logic-sensitivity. . .

logical geometry

historical and contemporary applications
of Aristotelian diagrams
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Structure of the course 44

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part I
� Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
� Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part II
� Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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The philosophy of logical geometry 45

recall the guiding metaphor:
Aristotelian diagrams constitute a language
logical geometry is the linguistics that studies that language

double motivation for logical geometry:
Aristotelian diagrams as objects of independent interest
Aristotelian diagrams as a widely-used language

fundamental question:
why are Aristotelian diagrams used so widely to begin with?
which reasons do the authors themselves offer for their usage?

(practice-based philosophy of logic)
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Four possible explanations 46

1 the received view: Aristotelian diagrams as pedagogical devices

2 the multimodal nature of Aristotelian diagrams

3 the implicit normativity of the tradition of using Aristotelian diagrams

4 Aristotelian diagrams as heuristic tools

these explanations are not mutually exclusive

Aristotelian diagrams as technologies or instruments
a technology can be created with one function in mind
and later acquire another function
the latter can even become the primary function
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The received view: pedagogical devices 47

Aristotelian diagrams are mainly pedagogical devices

visual nature ⇒ mnemonic value

helpful to introduce novice students to the abstract discipline of logic

Kruja et al., History of Graph Drawing, 2002:
“Squares of opposition were pedagogical tools used in the teaching of
logic . . . They were designed to facilitate the recall of knowledge that
students already had”

Nicole Oresme, Le livre du ciel et du monde, 1377:
“In order to illustrate this, I clarify it by means of a figure very similar to
that used to introduce children to logic.”
(Et pour ce mieux entendre, je le desclaire en une figure presque semblable a une que
l’en fait pour la premiere introduction des enfans en logique.)
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Scholastic and contemporary textbooks 48
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Student notes (Ludovicus Bertram, Leuven, ca. 1781) 49
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Problem 50

the received view was accurate in the past:
Aristotelian diagrams indeed were primarily/exclusively teaching tools

but today, Aristotelian diagrams occur

not only in textbooks on logic

but mainly in research-level papers/monographs on various disciplines
(logic, linguistics, psychology, computer science, etc.)
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The multimodal nature of Aristotelian diagrams 51

Aristotelian diagrams offer cognitive advantages, because of their
multimodal nature (visual + symbolic/textual)

Aristotelian diagrams as a visual summary of some of the key
properties of the logical system under investigation

example: classical square of opposition for (Fdd,FOL)

analogy: graph vs. raw numeric data

comparison with the received view (pedagogical devices):
both emphasize the cognitive advantages of Aristotelian diagrams
the second view accommodates teaching and research contexts
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Illustrations 52

Béziau, 2013:

“The use of such a coloured diagram is very useful to understand in a
direct, quick and synthetic way basic notions of modern logic,
corresponding to the notion of Übersichtlichkeit [surveyability] that
Wittgenstein was fond of”

Ciucci, Dubois & Prade, 2015:

“Opposition structures are a powerful tool to express all properties of
rough sets and fuzzy rough sets w.r.t. negation in a synthetic way.”

Eilenberg & Steenrod, 1952 (commutative diagrams in alg. topology):

“The diagrams incorporate a large amount of information. Their use
provides extensive savings in space and in mental effort.”
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Ongoing research: multimodality 53

Aristotelian diagrams as a visual summary of a logical system

is the emphasis on visual or on summary?
put differently: how about non-visual summaries?

analogy: graph vs. raw numeric data ⇒ Anscombe’s quartet:
very different datasets, with very different graphs
yet (near-)identical summarizing statistics (mean, variance, correlation)

Introduction to Logical Geometry – Part 5



Ongoing research: multimodality 54

Anscombe’s quartet applied to logical geometry
very different . . . datasets . . . logics/fragments
(near-)identical . . . statistics . . . non-visual summaries
very different . . . graphs . . . Aristotelian diagrams

example:
Fcat in different logical systems SYL and SYL*
|ΠSYL(Fcat)| = 3 = |ΠSYL∗(Fcat)|
classical square vs. flipped classical square

example:
different fragments Fcat and F?!

cat
|ΠFOL(Fcat)| = 4 = |ΠFOL(F?!

cat)|
degenerate square vs. Buridan octagon
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Problem 55

the second view (multimodality) fits well with visually ‘simple’
diagrams, such as the square of opposition

but what about more visually complex diagrams?
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The normativity of tradition 56

Aristotelian diagrams have a very rich and respectable tradition
within the broader history of logic: many famous authors made use of
these diagrams

the tradition of using Aristotelian diagrams gets endowed with a kind of
(implicit) normativity (tradition itself as object of reverence)

Banerjee et al., 2018:
“many artificial intelligence knowledge representation settings are
sharing the same structures of opposition that extend or generalise the
traditional square of opposition which dates back to Aristotle”

Ciucci, 2016:
“The study of oppositions starts in ancient Greece and has its main
result in the Square of Opposition by Aristotle. In the last years, we can
assist to a renewal of interest in this topic.”
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Problem 57

this provides a (partial) explanation as to why we continue to use
Aristotelian diagrams

it takes the tradition of using Aristotelian diagrams as its starting point

but how/why did this tradition start in the first place?
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Aristotelian diagrams as heuristic tools 58

Aristotelian diagrams as heuristic tools

they enable researchers
to draw high-level analogies between seemingly unrelated frameworks
to introduce new concepts (by transferring them across frameworks)

Aristotelian relations = ‘right’ layer of abstraction
not overly specific (otherwise, no analogies are possible)
not overly general (otherwise, the analogies become vacuous)
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Examples: drawing analogies 59

Ciucci et al., 2014:
The Structure of Oppositions in Rough Set Theory and Formal Concept
Analysis - Toward a New Bridge between the Two Settings

Dubois et al., 2015:
The Cube of Opposition - A Structure underlying many Knowledge
Representation Formalisms

Read, 2012:
“Buridan was able [. . . ] to exhibit a strong analogy between modal,
oblique and nonnormal propositions in his three octagons”
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Examples: introducing new concepts 60

think back of ¬[the x : Ax]¬Bx from the case study

Yao, 2013:
“With respect to the four logic expressions of the square of opposition,
we can identify four subsets of attributes. [. . . ] While the set of core
attributes is well studied, the other [three] sets of attributes received
much less attention.”
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Ongoing research: analogies and isomorphism 61

Gentner’s structure-mapping theory of analogy:
analogy is a kind of isomorphism
philosophy of representation systems (Barwise, Etchemendy, Hammer):

a good representation D is homomorphic to the represented application A
not all-or-nothing: degrees of homomorphicity
diagrams typically have the highest homomorphicity ⇒ isomorphism
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Ongoing research: analogies and isomorphism 62

Gentner’s structure-mapping theory of analogy:
analogy is a kind of isomorphism
philosophy of representation systems (Barwise, Etchemendy, Hammer):

a good representation D is homomorphic to the represented application A
not all-or-nothing: degrees of homomorphicity
diagrams typically have the highest homomorphicity ⇒ isomorphism
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Ongoing research: analogies and isomorphism 63

Gentner’s structure-mapping theory of analogy:
analogy is a kind of isomorphism
philosophy of representation systems (Barwise, Etchemendy, Hammer):

a good representation D is homomorphic to the represented application A
not all-or-nothing: degrees of homomorphicity
diagrams typically have the highest homomorphicity ⇒ isomorphism
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The End 64

Thank you! Questions?

More info: www.logicalgeometry.org
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