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Broader context 4

{ logical geometry J

historical and contemporary applications
of Aristotelian diagrams
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Russell on Aristotle and his logic 5

“ever since the beginning of the seventeenth century, almost every
serious intellectual advance has had to begin with an attack
on some Aristotelian doctrine; in logic, this is still true at the present day”

KU LEUVEN
Introduction to Logical Geometry — Part 5



Russell’s theory of definite descriptions 6

@ definite descriptions in natural language:

o the president of the United States
o the man standing over there
o the so-and-so

@ they can occur in

e subject position e.g. The president was diagnosed with Covid-19.
e predicate position e.g. Joe Biden is currently the president.

@ Russell's quantificational analysis of ‘the A is B’
Jx (A:I: AVY(Ay — y=x) A Bm)

o Neale's restricted quantifier notation
[the x: Ax]|Bx
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Russell’s theory of definite descriptions 7

@ [the z: Ax]|Bx =poL (EX) A (UN) A (UV)

(EX) JxAx there exists at least one A
(UN) VaVy((Az A Ay) — z =y) there exists at most one A
(uv) Vz(Axr — Brx) all As are B

@ much of the subsequent literature on Russell's quantificational theory of
definite descriptions has focused on one of these three conditions
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Russell’s theory of definite descriptions 8

@ [the z: Ax]|Bx =poL (EX) A (UN) A (UV)

(EX) JxAx there exists at least one A
(UN) VaVy((Az A Ay) — z =y) there exists at most one A
(uv) Vz(Axr — Brx) all As are B

@ much of the subsequent literature on Russell's quantificational theory of
definite descriptions has focused on one of these three conditions

@ what is the linguistic status of (EX)?

o Russell: (EX) is part of the truth conditions of ‘the A is B’
= if (EX) is false, then ‘the A is B' is false

e Strawson: (EX) is a presupposition of ‘the A is B’
= if (EX) is false, then ‘the A is B' does not have a truth value at all

KU LEUVEN
Introduction to Logical Geometry — Part 5



Russell’s theory of definite descriptions 9

@ [the z: Ax]|Bx =poL (EX) A (UN) A (UV)

(EX) JxAx there exists at least one A
(UN) VaVy((Az A Ay) — z =y) there exists at most one A
(uv) Vz(Axr — Brx) all As are B

@ much of the subsequent literature on Russell's quantificational theory of
definite descriptions has focused on one of these three conditions

@ the problem of incomplete definite descriptions (for which (UN) fails)
e.g. the book is on the shelf = there is at most one book in the universe

@ refinements and alternatives:
o ellipsis theories (Vendler)
e quantifier domain restriction theories (Stanley and Szabd)
e pragmatic theories (Heim, Szabo)
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Russell’s theory of definite descriptions 10

@ [the z: Ax]|Bx =poL (EX) A (UN) A (UV)

(EX) JxAx there exists at least one A
(UN) VaVy((Az A Ay) — z =y) there exists at most one A
(uv) Vz(Ax — Bzx) all As are B

@ much of the subsequent literature on Russell's quantificational theory of
definite descriptions has focused on one of these three conditions

@ what about non-singular definite descriptions?
o plurals e.g. The wives of King Henry VIII were pale.
@ mass nouns e.g. The water in the Dead Sea is very salty.

@ such descriptions also satisfy a version of (UV) (Sharvy, Brogaard)
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An Aristotelian square for definite descriptions 11

@ Russell: what is the negation of ‘the A is B'?

o law of excluded middle = ‘the A is B' is true or ‘the A is not B' is true
o but if there are no As, then both statements seem to be false

@ Russell: ‘the A is not B' is ambiguous (scope)
° —Elx(Ax AVY(Ay =y =x) A Bx) —[the x: Ax]Bx
o du (Ax AVyYy(Ay = y=x) A —|BLL') [the z: Az]-Bx

first interpretation:

o Boolean negation of ‘the A is B’
o if there are no As, then [the x: Az|Bux is false, —[the x: Az|Bux is true

@ second interpretation:

o if there are no As, then [the x: Az]Bx and [the z: Ax]-Bux are false
e not the Boolean negation of ‘the A is B’
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An Aristotelian square for definite descriptions 12

@ crucial insight: the two interpretations of ‘the A is not B’ distinguished
by Russell stand in different Aristotelian relations to ‘the A is B’

o [the x: Az|Bx and —[the x: Az]Bx are FOL-contradictory
o [the x: Az|Bx and [the x: Ax]-Bx are FOL-contrary

e cf. Haack (1978), Speranza and Horn (2010, 2012), Martin (2016)

@ natural move: consider a fourth formula (with two negations)

Jz(Az AVy(Ay — y = z) A Bz) [the z: Ax]|Bx
-3z (Az AVy(Ay — y = z) A\ Bz) —[the z: Az|Bx

Jz(Az AVy(Ay — y = z) A ~Bx) [the x: Ax]-Bx
-3z (Az AVy(Ay — y = ) A ~Bx) —[the z: Az]-Bx

@ consider the fragment Fyy containing these 4 formulas

@ (Fuq, FOL) is a classical square
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An Aristotelian square for definite descriptions 13

[the x: Ax]Bx [the x: Ax]—Bx

—[the x: Ax]—Bx —[the x: Ax]Bx

@ this is an Aristotelian square

@ but also a duality square IS |ecture 2
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An Aristotelian square for definite descriptions 14

@ this square is fully defined in ‘ordinary’ FOL = acceptable for Russell
@ summarizes Russell's solution to puzzle on law of excluded middle

@ interesting new formula: —[the z: Az|-Bz

o expresses a weak version of ‘the A is B’
—[the x: Az]-Bx =roL [(EX) A (UN)] — [the z: Az]|Bx
» if there is exactly one A,
[the 2: Ax]Bx and —[the z: Axz]-Bx always have the same truth value

» in all other cases,
[the x: Ax]Bz is always false, whereas —[the z: Az|-Bx is always true

o self-predication principles: what is the logical status of ‘the A is A'?
» [the z: Az]Ax is not a FOL-tautology
» —[the x: Az]-Ax is a FOL-tautology
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Boolean closure of the definite description square 15

@ the Aristotelian square for definite descriptions is not Boolean closed
@ its Boolean closure is a JSB hexagon

@ importance of the (EX)- and (UN)-conditions

[the x: Ax]Bx v
[the x: Ax]—Bx (EX) A (UN)

[the x: Ax]—Bx [the x: Ax]Bx [the x: Ax]—Bx

[the x: Ax]Bx — [the x: Ax]Bx — [the x: Ax]—Bx

—[the x: Ax]Bx A ~[(Ex) A (UN)]
—[the x: Ax]—Bx
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Bitstring analysis 16

o the definite description formulas induce the partition
HroL (Faa) := {1, a2, as}
e « := [the x: Ax]|Bx
e = [the x: Az]-Bux
o a3 :=—[(EX) A (UN)]

@ example bitstring representations:

o [the x: Az|Bx =roL a1 ~ gets represented as 100
o —[the z: Ax]-Bx =poL 1 V a3 ~~ gets represented as 101

@ logical perspective: the Boolean closure of the square/hexagon has
23 — 2 = 6 contingent formulas

@ conceptual/linguistic perspective:
recursive partitioning of logical space

KU LEUVEN

Introduction to Logical Geometry — Part 5



Bitstring analysis 17

[the x: Ax]Bx [the x: Ax]—Bx
100 010
101 fYTCTCTTPPPIETOTE PTPRPRPRPPPP P 011
—[the x: Ax]—Bx —[the x: Ax]Bx
—[(Ex) A (UN)]
001
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Linguistic relevance of the bitstring analysis 18

o view IIroL (Fgq) as the result of a process of recursively
partitioning and restricting logical space (Seuren, Jaspers, Roelandt)

o divide the logical universe: (EX) A (UN) vs. —[(EX) A (UN)]
e focus on the logical subuniverse defined by (EX) A (UN)
o recursively divide this subuniverse: [the x: Axz]Bx vs. [the z: Az]|-Bx

111

(Ex) A (UN) ~[(ex) A (UN)]
110 001

EX) A (UN) A (UV)  (EX) A (UN) A —(UV)
[the x: Ax]Bx [the x: Ax]—Bx
100 010
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Linguistic relevance of the bitstring analysis 19

@ another look at the ambiguity pointed out by Russell

e ‘the A is B" unambiguously corresponds to [the z: Axz]Bxz = 100
o relative to the entire universe, its negation is —[the x: Az|Bx = 011
o relative to the subuniverse (110), its negation is [the x: Az]-Bxz = 010

= Russell’s two interpretations of ‘the A is not B' correspond to
negations of ‘the A is B’ relative to two different universes
(semantic instead of syntactic characterization)

@ Seuren and Jaspers's (2014) defeasible Principle of Complement
Selection: “Natural complement selection is primarily relative to the
proximate subuniverse, but there are overriding factors.”

@ overriding factors: intonation, additional linguistic material (Horn 1989)

o the largest prime is not even; in fact, there doesn't exist a largest prime
e the prime divisor of 30 is not even; in fact, 30 has multiple prime divisors
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The categorical statements 20

@ consider the fragment F.,+ of categorical statements from syllogistics:

A all As are B Vz(Ax — Bzx)

I some As are B x(Azx A Bx)

E no As are B Va(Ax — —Bzx)
o) some As are not B Jz(Az N —~Bz)

@ already implicit in the definite description formulas

o [the x: Ax] Bz =roL (EX)A (UN)A (UV)
° ﬁ[the x: ALU] =FoL ﬁ(EX) vV ﬁ(UN) vV ﬁ(UV)
o [the x: A.T]—\B.%‘ =roL (EX) A (UN) A (UVY)
o —fthe x: Az]-Bx =poL —(EX) V =(UN) V =(UV*)
(UV) =FOL Vx(Ax — Bac) = A
-(uv) =poL Jx(AxA-Bxr) = O
(uv*) =poL Va(Azx —-Bzx) = E
=(uv*) =poL Jx(Az A Bzx) = |
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Bitstring analysis and degenerate square 21

o first-order logic (FOL) has no existential import

@ Fcat induces the partition rop (Feat) = {51, B2, B3, Ba}:
o 1 := JwxAx ANVx(Ax — Bx)
o 3o := Ju(Azx A Bx) A Jo(Ax A —Bx)
o (3 :=JrxAzx ANVz(Ax — —Buz)
e f34:=—drAx (recursive partitioning)

@ in FOL, the categorical statements constitute a degenerate square

1001 0011
Vx(dx — Bx)  Vx(dx — —Bx) V) (uv*)
Ix(4x A Bx) Ix(4x A —Bx) —(uv*) —(uv)
1100 0110
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Definite descriptions and categorical statements 22

@ there is a subalternation from [the x: Az|Bx to the A-statement
@ there is a subalternation from [the xz: Az|Bx to the |-statement
@ and so on...

@ summary:

the interaction between the definite description formulas and the
categorical statements gives rise to a Buridan octagon

KU LEUVEN

Introductio Logical Geometry — Part 5



Buridan octagon 23

[thex: Ax]Bx _  [thex: Ax]—Bx (Ex) A (UN) A (U'V_) _ (E_X) A (UN) A (UV*)

—[the x: Ax]~B Zjthe x: 4x]Bx —(EX) v —(UN) V":.—::':-(UV*) —'(EX) v =(UN) v ~(UV)
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Bitstring analysis 24

o the definite descriptions induce the 3-partition IIgo (Fqq)
@ the categorical statements induce the 4-partition Ilrop (Feat)

= together, Fygeat := Fdd U Fear induces the 6-partition
roL (Fddeat) = roL(Fda) AroL HroL (Feat)

o vy = daxTy(Ax AN Ay ANz # y) ANVax(Ax — Bx)
o 7y := Ju(Ax A Bx) A Jx(Ax A ~Bx)

o 73 :=daxJy(Ax AN Ay ANz # y) AV (Ax — —Bx)
o 74 := [the z: Ax]Bx

o 75 := [the z: Ax]-Bux

o s :=JxAx

° HFOL<~7:ddcat) is a refinement of HFOL<Fdd)
= Y4 = Q] and V5 = Qg, while Y1 VY2 V3V =FoL O3

@ IlroL (Fydeat) is a refinement of Tgop (Feat)
= v2 = f2 and v = B4, while v, V 74 =foL 1 and 73 V v5 =roL 33
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Bitstring analysis 25

@ ITroL (Fdear) allows us to encode every formula of the Buridan octagon

000100 000010
[thex:4x]Bx [thex: Ax]-Bx
~ —

100101 N~ 001011
Vx(4x — Bx) N Vx(4x — —Bx)
Ax(Ax A Bx)N Ix(Ax A —Bx)
110100 011010

—[the x: Ax]~Bx “fthe x: Ax] Bx

111101 111011
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Bitstring analysis 26

@ ITro (Fddeat) is ordered along two semi-independent dimensions
o the cardinality of (the extension of) A
o the proportion of As that are B

@ semi-independent: higher cardinalities allow for
more fine-grained proportionality distinctions
@ visual perspective on the refinement of partitions
o IlroL (Fadcar) is a refinement of o (Faqd)

o a; =foL 74 and az =foL7s and az=roL V1 V72V3V Y

G
© /R
Y1
g8 i
.n -
£ S Y2 Yo
2% Y
] 5
g ~ Y3
=2 1 0
cardinality of 4
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Bitstring analysis 27

@ ITroL (Fddeat) is ordered along two semi-independent dimensions
o the cardinality of (the extension of) A
e the proportion of As that are B

@ semi-independent: higher cardinalities allow for
more fine-grained proportionality distinctions
@ visual perspective on the refinement of partitions
o IlroL (Fadcar) is a refinement of Igop (Faqd)

o a1 =foL 74 and az =foL Y5 and a3z =foL 1 VY2V Y3V Y6

proportition of
As that are B

e

=2 1 0

cardinality of 4
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Bitstring analysis 28

@ ITroL (Fddeat) is ordered along two semi-independent dimensions

o the cardinality of (the extension of) A
o the proportion of As that are B

@ semi-independent: higher cardinalities allow for

more fine-grained proportionality distinctions
@ visual perspective on the refinement of partitions
o IlroL (Fadcat) is a refinement of Mo (Feat)
o 1 =roL 71 Vs and B2 =foL 72 and B3 =roL 73 VY5 and B1 =roL Y6

G
© R
Y1
g i
.n -
£ S Y2 Yo
2% y
] 5
a‘ﬂ Y3
=22 1 0
cardinality of 4
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Bitstring analysis 29

@ ITroL (Fddeat) is ordered along two semi-independent dimensions
o the cardinality of (the extension of) A

e the proportion of As that are B
@ semi-independent: higher cardinalities allow for

more fine-grained proportionality distinctions
@ visual perspective on the refinement of partitions
o IlroL (Fadcat) is a refinement of Mo (Feat)
o 1 =roL 71 Vs and B2 =foL 72 and B3 =roL 73 VY5 and B1 =roL Y6

Ba

proportition of
As that are B

=2 1 0

cardinality of 4
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Bitstring analysis

30

@ ITroL (Fddeat) is ordered along two semi-independent dimensions
o the cardinality of (the extension of) A
o the proportion of As that are B

@ semi-independent: higher cardinalities allow for

more fine-grained proportionality distinctions
@ ongoing work on linguistic aspects:
e plausible partitioning process?

e split the ‘> 2'-region into ‘> 3'- and '= 2'-subregions  (‘both’, ‘neither’)

Gy
oM

Y1
P t
=]
E 8 T2 (3
2% y
o'& 5
g, ~ Y3

22 1 0
cardinality of 4
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A related octagon 31

@ recent work on existential import (Seuren, Chatti and Schang, Read)

o for every categorical statement ¢ € Fa¢, define

e variant gimp that explicitly has existential import JxAx A
e variant ¢imp? that explicitly lacks existential import JrxAx — ¢
Aimp? =FOL VI(A:L‘ — Bx) =FOL (UV)

limpt  =rFoL Jz(Ax A Bx) =roL —(UVY)

Eimp? =FOL V$(ACC — —\BCE) =FOL (UV*)

Oimpt  =roL 3Jx(Axz A —-Bx) =roL —(UV)

Aimpt  =roL 3JxAzx AVx(Ax — Bx) =roL (EX) A (UV)
limp? =roL drAx — HI(A:L‘ A Bl’) =FoL —\(EX) V —\(UV*)
Empt  =roL JrAx AVe(Azx — -Bx) =roL (EX)A (UV¥)
Oimp? =roL 3JzAzr — Jx(Ax AN—-Bz) =roL —(EX)V —(UV)

° "T_Z;t = {Soimp?a Pimp! ‘ oS fcat}
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A related octagon 32

o Chatti and Schang's ]:2!

_+ is closely related to our Fygcar and Fear

o (FX. FOL) is a Buridan octagon, just like (Fygcat, FOL)

cat’
° HFOL(‘Fgét) - {Aimp!a Iimp! A Oimp!7 Eimp!v _‘HJ‘AI} — HFOL(fcat)

1000 0010

@A@Y EX)ALv)
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A related octagon 33

@ Buridan octagon (Fggcar, FOL)

e induces the partition Tro (Fudeat), With 6 anchor formulas
o [the z: Ax] Bx ZpoL ANI (000100 # 100101 A 110100)
o —the z: Az]~Bz ZroL A VI (111101 # 100101 v 110100)

@ Buridan octagon (F7:,, FOL)
e induces the partition IIroL (Fear), with 4 anchor formulas

o Aimpt =rFoL Aimp? A limp! (1000 = 1001 A 1100)

® limp? =FoL Aimp? V limp! (1101 = 1001 A 1100)
@ summary:

o one and the same Aristotelian family (Buridan octagons)

o different Boolean subtypes IS lecture 4
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The role of existential import 34

@ until now: only worked in ordinary first-order logic (FOL)

o Chatti and Schang: deal with existential import by adding (—)3zAx as
conjunct/disjunct to the categorical statements

@ alternative approach:

e existential import # property of individual formulas
e existential import = property of underlying logical system

@ introduce new logical system SYL:

e SYL = FOL + dzAx
o interpreted on FOL-models (D, I) such that I(A4) # 0

e analogy with modal logic:
» KD=K+ 0T
» interpreted on serial frames,
i.e. K-frames (W, R) such that R[w] # 0 (for all w € W)
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The role of existential import 35

move from FOL to SYL

influence on the categorical statements:

e e.g. A and E are unconnected in FOL, but become contrary in SYL, etc.
o the degen. square (Fcat, FOL) turns into a classical square (Fear, SYL)

no influence on the definite description formulas:

e e.g. [the x: Az|Bz and [the x: Az]-Bux are contrary in FOL,
and remain so in SYL
o the classical square (Fgq4, FOL) remains a classical square (Fqq, SYL)

no influence on the interaction between definite descriptions and
categorical statements:

e e.g. subalternation from [the z: Az|Bz to A and to | in FOL,
and this remains so in SYL

from Buridan octagon (Fygcat, FOL) to Lenzen octagon (Fyycat, SYL)

KU LEUVEN
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Lenzen octagon 36

[thex: Ax]Bx [thex: Ax]—Bx
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Bitstring analysis 37

@ which partition Ilsy| (Fyqcat) is induced?

e SYL is a stronger logical system than FOL

e consider the anchor formula =3z Az = 4 € oL (Fddeat):
FOL-consistent, but SYL-inconsistent

o Ilsvi (Fddeat) = roL (Fddeat) — {76}

o deleting the sixth bit position = unified perspective on all changes:

A (100101) and E (001011) go from FOL-unconnected to SYL-contrary
e 1 (110100) and O (011010) go from FOL-unconnected to SYL-subcontr.
A (100101) and | (110100) go from FOL-unconnected to SYL-subaltern

[the z: Az]Bz (000100) and [the : Az]Bx (000010) are FOL-contrary,
and remain so in SYL

[the 2:: Az] Bz (000100) and A (100101) are FOL-subaltern,
and remain so in SYL
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The role of uniqueness 38

e (EX) and (UN) play complementary roles in Russell's theory

@ introduce new logical system SYL*

o SYL* = FOL + VaVy((Ax A Ay) — = =y)
o interpreted on FOL-models (D, I) such that [I(A)| <1

@ move from FOL to SYL*

@ no influence on the definite description formulas

o e.g. [the x: Az|Bz and [the x: Az]-Bux are contrary in FOL,
and remain so in SYL*
o the classical square (Fgq, FOL) remains a classical square (Fyq, SYL)

@ influence on the categorical statements:

e e.g. A and E are unconnected in FOL, but become subcontrary in SYL*
o the degen. square (F,s:, FOL) turns into a classical square (F,;, SYL™)
e note: this classical square is ‘flipped upside down’!

KU LEUVEN
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Flipped classical square 39

Vx(Ax - Bx)Vx(Ax—) —Bx) Ax(Ax A Bx) Ax(4x A —Bx)

In(dx A Bx)  In(dx A —Bx) Vx(dx — Bx)  Vx(Ax — —Bx)

@ example: take A to be the predicate ‘monarch of country C"
@ then always |[I(A)| <1

e if C'is a monarchy, then |I(A)| =1
e if C'is a republic, then [I(A4)] =0

KU LEUVEN
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The role of uniqueness 40

@ move from FOL to SYL*

@ influence on the interaction between definite descriptions and
categorical statements
e e.g. [the x: Az]Bx and the E-statement go from FOL-contrary to
SYL*-contradictory
e e.g. in FOL there is a subalternation from [the x: Az|Bx to the
I-statement, but in SYL* they are logically equivalent to each other

o pairwise collapse of dd. formulas and categorical statements:

[the x: Az]|Bx  =gy1» | = 3Fz(Az A Bzx)
—[the x: Az]Bx  =gy.» E = Vz(Az — —Bx)
[the z: Az]-Bz =gy;» O = IZz(Ax A-Bzx)

—[the x: Az]-Bx =gy.+ A = Va(Az — Bx)

e from Buridan octagon (Fygcat, FOL)
to collapsed (flipped) classical square (Fygcar, SYLY)
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Collapsed flipped classical square 41

Ax(Ax A Bx) Ax(Ax A —Bx)
[the x: Ax]Bx [the x: Ax]—Bx

—[the x: Ax]-Bx —[the x: Ax] Bx
Vx(dx — Bx)  Vx(4dx — —Bx)
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Bitstring analysis 42

@ an elementary calculation yields the partition sy (Fgdcat)
= {3z Az ANVx(Azx — Bzx),JzAx AVr(Ax — —~Bz), ~3Jx Az}

o Ilsyi - (Fadear) = HroL (Fddear) — {71, 72,73} (up to =gyi+)
e SYL* is a stronger logical system than FOL
® 71,72,73 are FOL-consistent, but SYL*-inconsistent

® Tlsy* (Fadeat) = HroL(Fda) (up to =syi+)
o IlroL (Fyq) is the partition for the dd. square in FOL
e moving from FOL to SYL* did not change this square
e but did cause it to coincide with the categorical statement square

o Ilsyi+(Fadear) = oL (Feat) — {52} (up to =sy+)
o IlroL (Feat) is the partition for the cat. statement square in FOL
e SYL* is stronger than FOL; (35 is FOL-consistent, but SYL*-inconsistent
e moving from FOL to SYL* triggered change from degen. square to
(flipped) classical square, which coincides with the dd. square
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Summary of the case study 43

@ Avristotelian diagrams for Russell's theory of definite descriptions
o classical square, JSB hexagon, Buridan octagon. ..
o the formula —[the z: Ax]-Bx and its interpretation,
negations of [the z: Ax]Bux relative to different subuniverses. . .

@ phenomena and techniques studied in logical geometry
e bitstring analysis, Boolean closure. ..
o Boolean subtypes, logic-sensitivity. . .

logical geometry

historical and contemporary applications
of Aristotelian diagrams
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Structure of the course 44

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS~ Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
IS Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part Il
IZ" Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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The philosophy of logical geometry 45

o recall the guiding metaphor:

o Aristotelian diagrams constitute a language
o logical geometry is the linguistics that studies that language

@ double motivation for logical geometry:

o Aristotelian diagrams as objects of independent interest
o Aristotelian diagrams as a widely-used language

o fundamental question:

o why are Aristotelian diagrams used so widely to begin with?
o which reasons do the authors themselves offer for their usage?

(practice-based philosophy of logic)
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Four possible explanations 46

© the received view: Aristotelian diagrams as pedagogical devices
@ the multimodal nature of Aristotelian diagrams
© the implicit normativity of the tradition of using Aristotelian diagrams

Q Aristotelian diagrams as heuristic tools

@ these explanations are not mutually exclusive

o Aristotelian diagrams as technologies or instruments

e a technology can be created with one function in mind
e and later acquire another function
o the latter can even become the primary function
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The received view: pedagogical devices a7

@ Aristotelian diagrams are mainly pedagogical devices
@ visual nature = mnemonic value

@ helpful to introduce novice students to the abstract discipline of logic

o Kruja et al., History of Graph Drawing, 2002:

“Squares of opposition were pedagogical tools used in the teaching of
logic ... They were designed to facilitate the recall of knowledge that
students already had”

@ Nicole Oresme, Le livre du ciel et du monde, 1377:
“In order to illustrate this, | clarify it by means of a figure very similar to
that used to introduce children to logic.”

(Et pour ce mieux entendre, je le desclaire en une figure presque semblable a une que
I'en fait pour la premiere introduction des enfans en logique.)
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Scholastic and contemporary textbooks 48
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Student notes (Ludovicus Bertram, Leuven, ca. 1781) 49
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Problem 50

@ the received view was accurate in the past:
Aristotelian diagrams indeed were primarily/exclusively teaching tools

@ but today, Aristotelian diagrams occur

e not only in textbooks on logic

e but mainly in research-level papers/monographs on various disciplines
(logic, linguistics, psychology, computer science, etc.)
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The multimodal nature of Aristotelian diagrams 51

o Aristotelian diagrams offer cognitive advantages, because of their
multimodal nature (visual 4+ symbolic/textual)

@ Aristotelian diagrams as a visual summary of some of the key
properties of the logical system under investigation

@ example: classical square of opposition for (Fyy, FOL)

@ analogy: graph vs. raw numeric data

@ comparison with the received view (pedagogical devices):

e both emphasize the cognitive advantages of Aristotelian diagrams
o the second view accommodates teaching and research contexts

200 30 40 50 60
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lllustrations 52

@ Béziau, 2013:

“The use of such a coloured diagram is very useful to understand in a
direct, quick and synthetic way basic notions of modern logic,
corresponding to the notion of Ubersichtlichkeit [surveyability] that
Wittgenstein was fond of”

@ Ciucci, Dubois & Prade, 2015:

“Opposition structures are a powerful tool to express all properties of
rough sets and fuzzy rough sets w.r.t. negation in a synthetic way.”

o Eilenberg & Steenrod, 1952 (commutative diagrams in alg. topology):

“The diagrams incorporate a large amount of information. Their use
provides extensive savings in space and in mental effort.”
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Ongoing research: multimodality 53

@ Aristotelian diagrams as a visual summary of a logical system

@ is the emphasis on visual or on summary?
put differently: how about non-visual summaries?

@ analogy: graph vs. raw numeric data = Anscombe’s quartet:
o very different datasets, with very different graphs
e yet (near-)identical summarizing statistics (mean, variance, correlation)

Y1
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°
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°

4 6 8 10 12 14 16 18
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Ongoing research: multimodality 54

@ Anscombe’s quartet applied to logical geometry
o very different ... datasets ... logics/fragments
o (near-)identical ... statistics ... non-visual summaries
o very different ... graphs ... Aristotelian diagrams
@ example:

o Fea: in different logical systems SYL and SYL*
o [Msyi(Feat)| = 3 = sy (Fear)|
o classical square vs. flipped classical square

@ example:

o different fragments F.,; and F.,
o [Mror (Fear)| = 4 = [IroL (F5,)|
o degenerate square vs. Buridan octagon
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Problem 55

@ the second view (multimodality) fits well with visually ‘simple’
diagrams, such as the square of opposition

@ but what about more visually complex diagrams?

% mothylation
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The normativity of tradition 56

@ Aristotelian diagrams have a very rich and respectable tradition
within the broader history of logic: many famous authors made use of
these diagrams

@ the tradition of using Aristotelian diagrams gets endowed with a kind of
(implicit) normativity (tradition itself as object of reverence)

@ Banerjee et al., 2018:

“many artificial intelligence knowledge representation settings are
sharing the same structures of opposition that extend or generalise the
traditional square of opposition which dates back to Aristotle”

@ Ciucci, 2016:

“The study of oppositions starts in ancient Greece and has its main
result in the Square of Opposition by Aristotle. In the last years, we can
assist to a renewal of interest in this topic.”
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Problem 57

@ this provides a (partial) explanation as to why we continue to use
Aristotelian diagrams

@ it takes the tradition of using Aristotelian diagrams as its starting point

@ but how/why did this tradition start in the first place?

KU LEUVEN

Logical Geometry — Part 5



Aristotelian diagrams as heuristic tools 58

@ Aristotelian diagrams as heuristic tools

@ they enable researchers

e to draw high-level analogies between seemingly unrelated frameworks
e to introduce new concepts (by transferring them across frameworks)

o Aristotelian relations = ‘right’ layer of abstraction

e not overly specific (otherwise, no analogies are possible)
e not overly general (otherwise, the analogies become vacuous)
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Examples: drawing analogies 59

@ Ciuccai et al., 2014:

The Structure of Oppositions in Rough Set Theory and Formal Concept
Analysis - Toward a New Bridge between the Two Settings

@ Dubois et al., 2015:

The Cube of Opposition - A Structure underlying many Knowledge
Representation Formalisms

@ Read, 2012:

“Buridan was able [...] to exhibit a strong analogy between modal,
oblique and nonnormal propositions in his three octagons”
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Examples: introducing new concepts 60

@ think back of —[the z: Ax]-Bx from the case study

@ Yao, 2013:

“With respect to the four logic expressions of the square of opposition,
we can identify four subsets of attributes. [...] While the set of core

attributes is well studied, the other [three] sets of attributes received
much less attention.”
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Ongoing research: analogies and isomorphism 61

e Gentner's structure-mapping theory of analogy:
analogy is a kind of isomorphism

@ philosophy of representation systems (Barwise, Etchemendy, Hammer):

e a good representation D is homomorphic to the represented application A
e not all-or-nothing: degrees of homomorphicity
o diagrams typically have the highest homomorphicity = isomorphism
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Ongoing research: analogies and isomorphism 62

e Gentner's structure-mapping theory of analogy:
analogy is a kind of isomorphism

@ philosophy of representation systems (Barwise, Etchemendy, Hammer):

e a good representation D is homomorphic to the represented application A
e not all-or-nothing: degrees of homomorphicity
o diagrams typically have the highest homomorphicity = isomorphism

1 Aristotelian isomorphism 2
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Ongoing research: analogies and isomorphism 63

e Gentner's structure-mapping theory of analogy:
analogy is a kind of isomorphism

@ philosophy of representation systems (Barwise, Etchemendy, Hammer):

e a good representation D is homomorphic to the represented application A
e not all-or-nothing: degrees of homomorphicity
o diagrams typically have the highest homomorphicity = isomorphism

1 Aristotelian isomorphism 2
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The End 64

Thank you! Questions?

More info: www.logicalgeometry.org
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