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Aristotelian and Boolean structure 4

@ recall from lecture 1:

e since the Aristotelian relations are defined in purely Boolean terms,
the Aristotelian structure of a fragment is entirely determined by its
Boolean structure

o if two fragments have the same Boolean structure, they also have the
same Aristotelian structure

e every Boolean isomorphism between two fragments is also an Aristotelian
isomorphism between those fragments

@ the inverse does not hold:
o the Boolean structure of a fragment is not entirely determined by its
Aristotelian structure
e it is perfectly possible for two fragments to have the same Aristotelian
structure, and yet different Boolean structures
o there exist Aristotelian isomorphisms between two fragments that are not
Boolean isomorphisms between those two fragments
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Example 5

@ easiest + oldest example of this phenomenon (Pellissier 2008)
@ two hexagons Dy = (Fy,S5) and D, = (F,,S5)

@ bijection f: Fy — F;:
1L f(Op)=0p 3. f(O-p)=0U-p 5. f(LpvU-p)=-pVvUp
2. f(Op)=0p 4 f(Op)=0-p 6. f(OpAO-p)=pAOp
e f: Dy — D, is clearly an Aristotelian isomorphism (check visually!)

OpVOp —pVUp

CphOp phAOTD
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Example 6

@ since Dy and D, are Aristotelian isomorphic,
they belong to the same Aristotelian family

@ specifically: both diagrams are Jacoby-Sesmat-Blanché (JSB) hexagons

@ nevertheless, they have clear Boolean differences:

(1) Op Vv O—p is equivalent to the disjunction of Op and Ol—p,
but —p Vv Op is not equivalent to the disjunction of Clp and Cl—p

OpVOp —pVUp

CphOp phAOTD
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Example 7

@ since Dy and D, are Aristotelian isomorphic,
they belong to the same Aristotelian family

@ specifically: both diagrams are Jacoby-Sesmat-Blanché (JSB) hexagons

@ nevertheless, they have clear Boolean differences:

(2) Op A O—p is equivalent to the conjunction of Op and O—p,
but p A O—p is not equivalent to the conjunction of Op and O—p

OpVOp —pVUp

CphOp phAOTD
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Example 8

@ since Dy and D, are Aristotelian isomorphic,
they belong to the same Aristotelian family

@ specifically: both diagrams are Jacoby-Sesmat-Blanché (JSB) hexagons

@ nevertheless, they have clear Boolean differences:

(3) the disjunction of Op, O-p and Op A O—p is a tautology,
but the disjunction of (p, C0-p and p A O—p is not a tautology

OpVOp —pVUp

CphOp phAOTD
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Example 9

@ since Dy and D, are Aristotelian isomorphic,
they belong to the same Aristotelian family

@ specifically: both diagrams are Jacoby-Sesmat-Blanché (JSB) hexagons

@ nevertheless, they have clear Boolean differences:

(4) the conjunction of ¢p, O—p and Op VvV O=-p is a contradiction,
but the conjunction of {p, O—p and —p V [p is not a contradiction

OpVOp —pVUp

CphOp phAOTD
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Strong and weak JSB hexagons 10

e generic description of a JSB hexagon: (Fsp, R sp)
(independent of concrete formulas, logical system, etc.)

° ]:JSB - {047 [37 v, TQ, "/87 "’Y}
e R jsp specifies the relations between the formulas of F g5,
e.g., the formulas «, 3, are pairwise contrary

@ the Aristotelian family of JSB hexagons has two Boolean subtypes:

e strong JSB hexagon: a Vv 3V v is a tautology
o weak JSB hexagon: aV [V v is not a tautology

KU LEUVEN
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Boolean subtypes and bitstring analysis 11

o consider different Boolean subtypes of some given Aristotelian family

different Boolean subtypes have different Boolean properties

e.g. strong vs. weak JSB hexagon = at least 4 Boolean differences

o these differences can be summarized as follows:
different Boolean subtypes have different Boolean closures,

specifically: both diagrams are Jacoby-Sesmat-Blanché (JSB) hexagons

recall that bitstring length measures the size of the Boolean closure

o different Boolean subtypes are encoded by means of bitstrings of
different lengths

KU LEUVEN
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Example 12

@ our example of a strong JSB hexagon: (Fy,S5)
e induces the partition Iss(F;) := {Op, Op A O—p, O-p}
o |IIss(F¢)| = 3 = bitstrings of length 3
o Boolean closure: 22 = 8 elements, of which 22 — 2 = 6 are contingent

@ our example of a weak JSB hexagon: (F,,S5)

o induces the partition g5 (F,.) := {Op,p A O—p, =p A Op, O-p}
o |Iss(F,)| = 4 = bitstrings of length 4
o Boolean closure: 2* = 16 elements, of which 2* — 2 = 14 are contingent

(@)

010
OpAOp

KU LEUVEN

Introduction to Logical Geometry — Part 4



Example 13

@ this bitstring analysis summarizes all the individual Boolean differences

strong JSB bitstrings of length 3 weak bitstrings of length 4
y=aVp 101 =100 v 001 #* 1011 # 1000 Vv 0001

N =-aA-p 010 = 011 A 110 £ 0100 # 0111 A 1110
aVpVvVy=T 100 v 001 v 010 =111 £ 1000 v 0001 v 0100 # 1111
“aAN-BA—-y=1 011 A110A 101 =000 #* 0111 A 1110 A 1011 # 0000

(b) -pV Op

010
OpAO—p
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Boolean subtypes of the Buridan octagons 14

@ generic description of a Buridan octagon: (Fpuri, R Buri)

° -/TBu’ri - {057 Bla ﬂ?a v, T, _‘/7)17 _‘/323 _‘7}
@ Rpuri: subalternations from «a to 31, B2 to «y; unconnected /31, 2

@ the Buridan octagons come in three Boolean subtypes:

strong Buridan octagon a=p1 AP and y=p1V P length 4
intermediate Buridan octagon a =1 A3y XOR~y=p; VG, length 5
weak Buridan hexagon a=p1 AP nor y=p61V P length 6

y' “‘LL’
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Example of a strong Buridan octagon: (F,.,, CPL) 15

@ induces the partition Ilcpy (Fprop) = {P A ¢, 0 A —q,—p A q,—p A g}
@ 4 anchor formulas = bitstrings of length 4

(1000 = 1100 A 1010)

@ p A q is equivalent to the conjunction of p and ¢
(1110 = 1100 v 1010)

@ pV q is equivalent to the disjunction of p and ¢

1000 0001

v v
1i0P V4 0111
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Example of a weak Buridan octagon: (F o451, FOS5) 16

o fragment Fipoqsys Of 8 de re modal formulas (with ampliation):

1. all S are necessarily P JxOSz AVz(OSz — OPx) v
2. all S are possibly P JzOSx AVz(OSx — OPzx) Vo
3. some S are necessarily PP Jz(0Sx A OPx) 30
4. some S are possibly P Jz(OSx A OPx) 30
5. all S are necessarily not P Vz(0Sz — O-Px) vO-
6. all S are possibly not P VY (0Sz — O—Px) VO—
7. some S are necessarily not P —JzQSz V Jx(OSx A O-Px) 30—
8. some S are possibly not P =3z0Sz Vv Fz(OSx A O—Px) FO=

o this induces the partition IIross(Fmodsyl):

{ VD’
VO A 30 A 30,
VO AVO,
30 A 30,
YO= A 30 A 30,
vO- }

KU LEUVEN

Logical Geometry — Part 4



Example of a weak Buridan octagon: (o451, FOS5) 17

@ 6 anchor formulas = bitstrings of length 6

o VO £ VYO AID (100000 # 111000 A 110100)
e 30 VoV IO (111110 # 111000 v 110100)

100000 000001
Yo Yoo

111000
Vo

110100

111110 011111
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Example of an intermediate Buridan octagon: (F,,sua, FOL) 18

o fragment Fpusual Of 8 propositions ‘of unusual construction’:

1. all S all P are JzSz A JyPy AVx(Sz — Yy(Py — = =vy)) W
2. all S some P are FzSz AVz(Sz — Jy(Py Az =1y)) V3
3. some S all P are JyPy A Jz(Sx AVy(Py — x =vy)) v
4. some S some P are Jz(Sz A Jy(Py ANz =y)) 33
5. all S all P are not Vz(Sz — Vy(Py — x # y)) V=
6. all S some P are not —-3JyPy VvV Vz(Sz — Jy(Py Az #vy)) V3
7. some S all P are not =3xSz V Jx(Sz AVy(Py — x # y)) V-
8. some S some P are not —3zSzV -IyPyV Iz(Sz AJy(Py Az #£y)) IFI=

@ this fragment induces the partition IroL (Funusual):

{ W,
VI A VI,
IV A V-,
V3- A V- A T3,
Vv }
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Example of an intermediate Buridan octagon: (F,uusua, FOL) 19

@ 5 anchor formulas = bitstrings of length 5

e W=VIAIV (10000 = 11000 A 10100)
e J3#vIv v (11110 # 11000 Vv 10100)

I-IEI“ 13-
11110 01111
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Boolean subtypes of the Keynes-Johnson octagons 20

@ generic description of a Keynes-Johnson octagon: (Fxy, Rky)
° -FKJ - {k17 k27 k37 k47 _'klv _‘k27 _‘k?)a _‘k4}
o Ryy: k1 and ks are unconnected; ko and k4 are unconnected;
contrarieties between k1 and ko, ki and k4, ks and ko, k3 and ky

@ the Keynes-Johnson octagons come in two Boolean subtypes:

strong Keynes-Johnson octagon \/zj k; is a tautology length 6
weak Keynes-Johnson hexagon \/zjll k; is not a tautology length 7

KU LEUVEN
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Example of a strong KJ octagon: (Fgeon, KD) 21

@ induces the partition IIxp(Fgeon) ={ p»APpAP-p, pAOp,
-pAPpAP-p, -pAOp, pANO-p, —pAO-p }
@ 6 anchor formulas = bitstrings of length 6

110000 001100

pPAPp

100010 001001

110110 011101
pv Op ot "“2/ ......... —pVvOp

pvOp
110011 001111
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Example of a weak KJ octagon: (Fupnes; FOL3) 22

e induces the partition IIroL, (Fsubneg) = {
Va(Sz — Px) AVx(—~Sx — —Px), Vx(Szr — Pz)A Jz(-Sx A Pz),
Vz(Sxr — —~Px) AVx(-~Sx — Pz), Ve(Sz — —Pzx) A 3x(=~Sx A - Px),
Jx(Sx N —~Px) ANVx(=Sx — —Px), Jz(Sx A Px) AVz(-Sz — Pz),
Jx(Sz A Px) A Jx(Sxz A ~Pzx) A Jx(—~Sx A Px) A Jz(=Sxz A —Pz) }
@ 7 anchor formulas = bitstrings of length 7

1100000 0011000
Vx(Sx — Px Vx(Sx — —Px)

Va ~«... Vx(—Sx — Px)

Vx(—Sx — =Px) .-’ T\
0010010

1000100

1101101 0111011
Ax(—Sx A —Px) \ / ......... Ax(—Sx A Px)

Ix(Sx A Px Fx(Sx A —Px)

1100111 0011111
KU LEUVEN
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Boolean subtypes of the U12 hexagons 23

@ generic description of a U12 hexagon: (Fyiz2, Ryiz2)

° IUZQ - {%Ba%ﬁ%ﬁﬁ»ﬁ')’}
e Ruyie: «, 3,7 are pairwise unconnected

@ the U12 hexagons come in five Boolean subtypes:
U12 hexagons that require bitstrings of length 4, 5, 6, 7, 8

Y

-B -a
Y
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Two examples of U12 hexagons 24

e the fragment F; = {p, q, —p, =q,p <> q,p <> —q} induces the partition
Hepu(Fe) = {pAa,p A —q,=p A g, —p A —q} = length 4

e the fragment F,. = {p, ¢, r, —p, ~q, —r} induces the partition
HepL(Fr) ={pAgAr,pANgA=r,pAN=gAr,p\N=gA-r,—pAgA

r,pAgA-T,pA-gAr,mpA-g A} = length 8
1001 01010101
peq -r
1100 1010 11110000 11001100
p q P, q
~q P - y
0101 0011 00110011 00001111
peq r
0110 10101010

KU LEUVEN
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Boolean homogeneity 25

@ some Aristotelian families do not have multiple Boolean subtypes:

o they are Boolean homogeneous
o all their members can be encoded using bitstrings of the same length

@ some examples:

o the family of PCDs: requires only bitstrings of length 2

o the family of classical squares: requires only bitstrings of length 3

o the family of degenerate squares: requires only bitstrings of length 4

o the family of SC hexagons: requires only bitstrings of length 4

o the family of Lenzen octagons: requires only bitstrings of length 5
@ note:

o the most well-known family (classical squares) is Boolean homogeneous
o this might explain why the issue of Boolean subtypes is not very familiar

KU LEUVEN
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A-consistency 26

@ what determines whether a given Aristotelian family A has multiple
Boolean subtypes or is rather Boolean homogeneous?

e given fragment F = {®1,...,pm} and logic S, recall that
Is(F):={ae€L|a==xp1 A+ A £tpm, and « is S-consistent}
(the elements « € IIg(F) are anchor formulas) IE” |ecture 1

@ how to calculate the partition induced by the generic description
(Fa,R4) of some Aristotelian family A
(recall: this is independent of any concrete logical system)

o lly:={ael]|a==xp A ALpn, and a is A-consistent}

@ an anchor formula « is A-consistent iff it does not contain two
conjuncts that are contradictory or contrary according to R 4

KU LEUVEN
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A-consistency and S-consistency 27

@ an anchor formula is

o A-consistent iff it does not contain two conjuncts that are contradictory
or contrary according to the generic description of A (viz., R 4)

e A-inconsistent iff it does contain two conjuncts that are contradictory or
contrary according to the generic description of A (viz., R4)

@ lemma: if an anchor formula is A-inconsistent, then it is S-inconsistent

(contrapositive: if it is S-consistent, then it is A-consistent)

@ the converse does not hold:
an anchor formula can be S-inconsistent and yet A-consistent

@ concrete example: (pV q) A —p A g

o this formula is CPL-inconsistent
o this formula is .A-consistent (for any Aristotelian family A)

KU LEUVEN
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A-consistency and S-consistency: number of conjuncts 28

@ we have just seen:

o if an anchor formula is A-inconsistent, then it is S-inconsistent
e an anchor formula can be S-inconsistent and yet A-consistent
e example: (pVq) A—pA—q (three conjuncts)

@ lemma: consider an anchor formula with at most two conjuncts:

o if that anchor formula is A-inconsistent, then it is S-inconsistent
o if that anchor formula is S-inconsistent, then it is A-inconsistent

= A-consistency guarantees S-consistency

@ lemma: consider an anchor formula with at least three conjuncts:

o if that anchor formula is A-inconsistent, then it is S-inconsistent
e that anchor formula can be S-inconsistent and yet A-consistent

= A-consistency does not guarantee S-consistency

KU LEUVEN
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Boolean subtypes vs. Boolean homogeneity 29

@ what determines whether a given Aristotelian family A has multiple
Boolean subtypes or is rather Boolean homogeneous?

e lly={acl|a==xpi1 A+ ALpn, and a is A-consistent}

@ each anchor formula o € Tl 4 is A-consistent

e if @ has at most two conjuncts, it is also guaranteed to be S-consistent
o if « has at least three conjuncts, it is not guaranteed to be S-consistent

@ case distinction:

e all o € II 4 are guaranteed to be S-consistent
= A is Boolean homogeneous, with single bitstring length |II 4]

e n > 0 formulas in IT 4 are not guaranteed to be S-consistent
= A has n + 1 Boolean subtypes, with bitstring lengths
Al —n,.ooy [Ta] = 1, L4

KU LEUVEN
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Example 1: JSB hexagon 30

@ anchor formulas in II jgp:

° « guaranteed to be S-consistent
o 3 guaranteed to be S-consistent
° guaranteed to be S-consistent
o "a N[Ny not guaranteed to be S-consistent

@ the Aristotelian family of JSB hexagons has 2 Boolean subtypes:

o length 3, corresponding to partition {«, 3,7}
o length 4, corresponding to partition {«, 3,7, "a A =8 A =y}

KU LEUVEN
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Example 2: Buridan octagon 31

@ anchor formulas in IIg,.;:

° « guaranteed to be S-consistent
e —a APy ApPsy not guaranteed to be S-consistent
o 1 N—fs guaranteed to be S-consistent
e =81 A B guaranteed to be S-consistent
o 01 A=l Ay not guaranteed to be S-consistent
o —vy guaranteed to be S-consistent

o the Aristotelian family of Buridan octagons has 3 Boolean subtypes:
length 6, length 5, length 4

KU LEUVEN
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Example 3: Keynes-Johnson octagon

32

@ anchor formulas in Ig:
ki N k3

ky A —ks

ko A ky

ko A —ky

-k A ks

—ko A ky

—ky A kg A —kz A —ky

guaranteed to be S-consistent
guaranteed to be S-consistent
guaranteed to be S-consistent
guaranteed to be S-consistent
guaranteed to be S-consistent
guaranteed to be S-consistent

not guaranteed to be S-consistent

o the KJ octagons have 2 Boolean subtypes: length 7, length 6

Introductio Logical Geometry — Part 4
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Example 4: classical square 33

@ anchor formulas in I ges 4

° « guaranteed to be S-consistent
o 3 guaranteed to be S-consistent
o ~aN—f guaranteed to be S-consistent

o the Aristotelian family of classical squares is Boolean homogeneous
(length 3)

KU LEUVEN
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Example 5: Sherwood-Czezowski hexagon 34

@ anchor formulas in I1g¢:

° « guaranteed to be S-consistent
e "aAf guaranteed to be S-consistent
o °BAYy guaranteed to be S-consistent
o —y guaranteed to be S-consistent

@ the Aristotelian family of SC hexagons is Boolean homogeneous
(length 4)

KU LEUVEN
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Exceptional case: U12 hexagon

35

@ anchor formulas in I1y;s:

alNB Ay
a BNy
a NS Ay
aN-f Ny
—aNB Ay
—aAB Ay
—aAN-f Ay
s A BNy

Y

not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent

-
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Exceptional case: U12 hexagon

36

@ anchor formulas in I1y;s:
e aANBAY

aNB ANy

aN-f Ay

a NS Ny

—aNB Ay

—a AP Ay

—aAN-B Ay

AN =f Ay

not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent
not guaranteed to be S-consistent

@ misguided prediction: the Aristotelian family of U12 hexagons has

9 Boolean subtypes: length 8, 7, 6, 5, 4,

3,2,1,0

@ but encoding unconnectedness requires bitstrings of length at least 4

IF" |ecture 2

@ correct analysis: the Aristotelian family of U12 hexagons has

5 Boolean subtypes: length 8, 7, 6, 5, 4

Introducti Logical Geometry — Part 4
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Broader context 37

@ ongoing research effort in logical geometry:
develop a systematic typology of Aristotelian diagrams

o for each diagram size:
what are the Aristotelian families with that size?

@ for each Aristotelian family:
what are the Boolean subfamilies of that Aristotelian family?

o further series of Aristotelian families:

e e.g. au,-structure: n pairwise contrary formulas, and their negations
o a1 = PCD, ay = classical square, a3 = JSB, ay = Moretti ...

KU LEUVEN
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Broader context 38

O4

S
o
a
Q

Buridan
Lenzen

1234

11l = Moretti

empty
PCD
classical
degenerate
JSB
sC
(V23
u12
ug
I
Il = Beziau

v
Vi
Vil
X
Vil
X
XV
XV
X
Xi
Xil
XVII = KeyJon
XVill
XV

<

length 1
length 2 X
length 3 X X

length 4 X|x X X
length 5 X
length 6
length 7
length 8
length 9
length 10
length 11
length 12
length 13
length 14
length 15
length 16
length 17

X X X X X
x X
>
x X
X X
x <
X X X X X X
<
<
X X X X X
X X X X X
X X X X X X
X X X X X X X X
X X X X X X X X X X X X
x
<
X X X X

KU LEUVEN
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Broader context 39

o recall from lecture 1:
if 7 only contains S-contingent formulas and is closed under negation,
then [log,(|F|+2)] < [Is(F)| < 2172

@ some specific cases:

2%/2 =9

o [Fl=2 = 2=[log,(2+2)] < [ls(F)] <
o |[Fl=4 = 3=TJlog,(4+2)] < [Is(F) < 2¢2=4
o |[Fl=6 = 3=[log,(6+2)] < |lIs(F) < 2¢%2=38
o |[F|=8 = 4=Tlog,(8+2)] < |Os(F) < 2°2=16
Oo O [¢5} 04
§38 ¢ £
%§ 355?—%$%>§§5§x§§§§§§551234
length 1 X — . =
length 2 X
length 3 X X
length 4 XX X X X X X X X
length 5 X XX X X X X X X X X X X X X X X
length 6 X X X X X X X X X X X X X X X X X
length 7 X X X X X X X X X X X X
length 8 X X X X X X X X X
length 9 X X X X X X X
length 10 X X X
length 11 X X
length 12 X X
length 13 X
length 14 X
length 15 X
X

length 16
KU LEUVEN
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Broader context 40

o recall from lecture 1:
if 7 only contains S-contingent formulas and is closed under negation,
then 2flogy(|Ts(F))] < |F| < 2MPl 2

@ some specific cases:

o [TIs(F)|=2 = 2=2[log,(2)] < |F| < 22-2=2
o [IIs(F)|=3 = 4=2[log,(3)] < |F] < 2°-2=6
o [Is(F)|=4 = 4=2[log,(4)] < |F] < 2*-2=14
o Is(F)|=5 = 6=2[log,(5)] < |F|] < 2°-2=230
Oo O [¢5} 0Oa
§38 ¢ £
%§ 35§§—%%‘%>_§§5§x;§§;§§551234

length 1 X = - =

length 2 X

length 3 X X

length 4 XX X X X X X X X

length 5 X XX X X X X X X X X X X X X X X

length 6 X X X X X X X X X X X X X X X X X

length 7 X X X X X X X X X X X X

length 8 X X X X X X X X X

length 9 X X X X X X X

length 10 X X X

length 11 X X

length 12 X X

length 13 X

length 14 X

X
X

length 15
length 16
KU LEUVEN
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Structure of the course 41

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS~ Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
IS Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part Il
I¥” Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook

KU LEUVEN
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Logic-sensitivity of the Aristotelian diagrams 42

@ Aristotelian diagrams are (in various ways) sensitive to the specific
details of the underlying logical system

e informal definition: ‘¢ and v cannot be true together’
e model-theoretic definition: =s —(p A 1)

@ this point has also been emphasized by Claudio Pizzi:

e “An obvious but frequently neglected proviso concerning the squares of
oppositions is that the relations which are claimed to hold between the
formulas of the square only subsist with reference to some given
background system” (2016)

e “an ordered 4-[tu]ple is an Aristotelian square always with respect to some
system S” (2017)

KU LEUVEN
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Basic example 43

@ one fragment F := {Op, Op, O-p, O—p}
@ two logical systems:

e K: basic normal modal logic (all Kripke models)
e KD: axiom Op — Op (or OT) (serial Kripke models)

e (F,K) is a degenerate square

e (F,KD) is a classical square

op o—p

KU LEUVEN
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Basic example: bitstring analysis 44

o IIk(F) = {0p A Op, Op A O—p,0-p A O—p,Op A O-p} (length 4)
o Ikp(F) = {Op, Op A O=p, O-p} (length 3)

o from K to KD: delete the fourth bit position

o [p A O—p is K-consistent, but KD-inconsistent
o Ilkp(F) = {a € Ik(F) | a is KD-consistent }

1001 0011 100 001
0p u-p tp a=p

op O—p
1100 0110 110 011

KU LEUVEN
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Aristotelian vs. duality relations 45

@ Aristotelian relations are logic-sensitive:

o [Jp and O—p are K-unconnected, but KD-contrary
e [p and Op are K-unconnected, but in KD-subalternation

@ duality relations are not (or rather: less) logic-sensitive:

e [Jp and [—p are each other’s internal negation, in K as well as KD
e [Jp and Op are each other's dual, in K as well as KD

@ duality relations are sensitive to the underlying logic,
but only to non-Boolean aspects

e K and KD are both classical Boolean logics = no differences in duality
e e.g. pAqand pV q are dual in classical logic, but not in intuitionistic logic
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Logic-sensitivity of the opposition relations 46

@ recall from lecture 2:

o AGs is hybrid between OGs and ZGs
e non-contradiction: NCDs(¢, ) iff s =(p A ) and s —(—p A =)

@ consider two logics W,S, and assume that for all ¢: Ew ¢ = Es¢p

@ theorem: from the weaker logic to the stronger logic

if CDW(()D7’(/}) then CDS(<)07/¢)

if CW(QO'(/)) then CS(<)07’L/}) or CDs(QOﬂ/))

if SCW(QOW then SCS(QD,?/)) or CDS(%”/’)

if NCDw (e, 1) then NCDs (¢, ) or Cs(g, ) or SCs(i, 1) or CDs(p,v)

@ theorem: from the stronger logic to the weaker logic

o if CDs(¢, 1) then CDw(p, 1) or CGw(p, ) or SCw(p, 1) or NCDw(p, 1)
o if Cs(p,1) then Cw(p, 1) or NCDw(¢p, )

o if SCs(p, 1) then SCw(p, 1) or NCDw(¢p, )

o if NCDs(, ) then NCDw (¢, )
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Logic-sensitivity and informativity a7

@ diagrammatic summary of the two theorems:

e going to a stronger logic can make you go up in the diagram
e going to a weaker logic can make you go down in the diagram
contradiction

contra- subcontra-
riety riety

non-contradiction

e recall the informativity ordering <! of OG EZ” |ecture 2

@ theorem: the following are equivalent:

e Sis at least as strong as W
o for all p,¢: if Rw(p,v) and R5(p,v), then R <Y R/
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Logic-sensitivity of the implication relations 48

@ a completely analogous story can be told about the implication relations

@ summary:

e going to a stronger logic can make you go up in the diagram
e going to a weaker logic can make you go down in the diagram

bi-impl.

left- right-
impl. impl.

non-impl.
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Diagrammatic sources of logic-sensitivity 49

@ sources of logic-sensitivity in Aristotelian diagrams:

o logic-sensitivity of the Aristotelian (opp./imp.) relations themselves

o the condition that Aristotelian diagrams only contain pairwise
non-equivalent formulas

o the condition that Aristotelian diagrams only contain contingent formulas

@ equivalence is a logic-sensitive notion:
two formulas might be equivalent in one logic,
and not equivalent in another logic

@ contingency is a logic-sensitive notion:
a formula might be contingent in one logic, and not in another logic
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The non-equivalence condition: example 50

@ one fragment F := {O0Op, Op, OO—p, O—p}
@ two logical systems:
o KT: axiom Op — p (reflexive Kripke models)
o KT4: axioms Op — p, Op — OCp (refl., transitive Kripke models)
e (F,KT) is a classical square

o (F,KT4)isa PCD

we go from Cxr(0Op, O—p) to CDk4(E0p, O—p)
we go from Lixt(800p, Op) to Blkt4(00p, Op)

bdp 0—p
tp 0O—p

Dp 50p
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The non-equivalence condition: bitstring analysis 51

o Ilkr(F) = {00p,Op A OO=p, O—p} (length 3)
o Ilkra(F) = {Up, O—p} (length 2)

o from KT to KT4: delete the second bit position

o Op A OO—p is KT-consistent, but KT4-inconsistent
o Ilkt4(F) = {a € TIk7(F) | a is KT4-consistent}

100 001

10 01
oop 0-p
op —p

gp()(}—*p
110 011
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The contingency condition: example 52

@ one fragment F := {Op, OT,0—p, 0L}

@ two logical systems:
e K: basic normal modal logic (all Kripke models)
e KD: axiom Op — Op (or OT) (serial Kripke models)

e (F,K) is a classical square
e (F,KD) isa PCD

@ QT is contingent in K, but a tautology in KD
@ [IL is contingent in K, but a contradiction in KD

Op

ao—p
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The contingency condition: bitstring analysis 53

o IIk(F) = {0p, 0T AD—p,0L} (length 3)
o Ilkp(F) = {Op,0-p} (length 2)

o from K to KD: delete the third bit position

o 1 is K-consistent, but KD-inconsistent
o Ilkp(F) = {a € Ik(F) | a is KD-consistent }

10
Op

a-p
01
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Structure of the course 54

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS~ Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
IS Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part Il
I¥" Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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Logic-sensitivity and Boolean subtypes 55

@ logic-sensitivity: one fragment, two logics = two different diagrams

o classical square vs. degenerate square
e classical square vs. PCD

o JSB hexagon vs. classical square

o Buridan octagon vs. Lenzen octagon

@ until now: the two diagrams belong to different Aristotelian families
@ also possible:

o the two diagrams belong to the same Aristotelian family
o but to different Boolean subtypes of that Aristotelian family
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Logic-sensitivity and Boolean subtypes: example 1 56

one fragment F, two logical systems: K and KD

F == {OpAOp,OpV Op, O=p A O=p,T=pV O=p,OpV O=p, Op A O—p}
(F,K) is a weak JSB hexagon

(F,KD) is a strong JSB hexagon

ek (Op A Op) V (O-p A O=p) V (Op A O—p)

Ekp (Bp A Op) V (O-p A O=p) V (Op A O-p)

opvop opvop

ap A Op O pAQ—p op A Op O pASp

ap v Op o-pvop ap v Op o-p v o-p

Op A O p Op AO—p
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Logic-sensitivity and Boolean subtypes: bitstring analysis 57

° HK(‘F) - {Dp A <>p7 <>p A Oﬁp, Dﬁp A <>ﬁp7 Qplong} (|ength 4)
o Ikp(F) = {Op, Op A O=p, O-p} (length 3)

@ Plong ‘= (DP \ <>p) A (Dﬁp \ <>ﬁp) A (Dp \ Dﬁp)

o from K to KD: delete the fourth bit position
(@iong is K-consistent, but KD-inconsistent)

1011 101

gpvop gpvaop
ap A Op o pAQp op A Op o pASp
1000 0010 100 001
1101 \ . 0111 110 \ ; 011
op v Op o-pvop ap v Op ao-pvop

Op A0 p Op A O—p
0100 010
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Logic-sensitivity and Boolean subtypes: example 2 58

@ one fragment F, three logics: KT, KT4 (= S4) and KT45 (= S5)
e F := {0p A Og, OOp, 00q, 0OOp v OO0g} (+ negations)

@ (F,KT) is a weak Buridan octagon

@ (F,KT4) is an intermediate Buridan octagon

@ (F,KT45) is a strong Buridan octagon

°

°

°

Op AOg #xr OOpAQOg and OOOp Vv OO0g #kr  OOp Vv Oq
Op AOgq Zxkts OOpAQOg and  OOOp Vv OO0g =k1a OOp VvV Olg
Op A Og =xtas OOp A O0g  and  OOOp Vv OO0g =kras O0p Vv Oq

op A Og 0o—op A 0070g

O0op v &g _‘Db v "Og
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Cross-connections among different types of logic-sensitivity 59

@ many different types of logic-sensitivity:

based on the Aristotelian relations

based on the diagrammatic condition of non-equivalence
based on the diagrammatic condition of contingency
based on Boolean subtypes

@ there are many cross-connections among these different types

@ example:
e for any 4-formula fragment F = {p, 1, ~p, =1}, define a 6-formula
fragment H(F) :={o A, oV, 2o A=), = V =), 0 V h, ~p A )}
e theorem: for any logical system S:
» if (F,S) is a degenerate square, then (H(F),S) is a weak JSB hexagon
> if (F,S) is a classical square, then (H(F),S) is a strong JSB hexagon
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The End 60

Thank youl!

Questions?

More info: www.logicalgeometry.org
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