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Aristotelian and Boolean structure 4

recall from lecture 1:
since the Aristotelian relations are defined in purely Boolean terms,
the Aristotelian structure of a fragment is entirely determined by its
Boolean structure
if two fragments have the same Boolean structure, they also have the
same Aristotelian structure
every Boolean isomorphism between two fragments is also an Aristotelian
isomorphism between those fragments

the inverse does not hold:
the Boolean structure of a fragment is not entirely determined by its
Aristotelian structure
it is perfectly possible for two fragments to have the same Aristotelian
structure, and yet different Boolean structures
there exist Aristotelian isomorphisms between two fragments that are not
Boolean isomorphisms between those two fragments
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Example 5

easiest + oldest example of this phenomenon (Pellissier 2008)
two hexagons Dℓ = (Fℓ,S5) and Dr = (Fr,S5)

bijection f : Fℓ → Fr:
1. f(□p) = □p 3. f(□¬p) = □¬p 5. f(□p ∨□¬p) = ¬p ∨□p
2. f(♢p) = ♢p 4. f(♢¬p) = ♢¬p 6. f(♢p ∧ ♢¬p) = p ∧ ♢¬p

f : Dℓ → Dr is clearly an Aristotelian isomorphism (check visually!)
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Example 6

since Dℓ and Dr are Aristotelian isomorphic,
they belong to the same Aristotelian family
specifically: both diagrams are Jacoby-Sesmat-Blanché (JSB) hexagons

nevertheless, they have clear Boolean differences:

(1) □p ∨□¬p is equivalent to the disjunction of □p and □¬p,
(1) but ¬p ∨□p is not equivalent to the disjunction of □p and □¬p
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Example 7

since Dℓ and Dr are Aristotelian isomorphic,
they belong to the same Aristotelian family
specifically: both diagrams are Jacoby-Sesmat-Blanché (JSB) hexagons

nevertheless, they have clear Boolean differences:

(2) ♢p ∧ ♢¬p is equivalent to the conjunction of ♢p and ♢¬p,
(2) but p ∧ ♢¬p is not equivalent to the conjunction of ♢p and ♢¬p
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Example 8

since Dℓ and Dr are Aristotelian isomorphic,
they belong to the same Aristotelian family
specifically: both diagrams are Jacoby-Sesmat-Blanché (JSB) hexagons

nevertheless, they have clear Boolean differences:

(3) the disjunction of □p, □¬p and ♢p ∧ ♢¬p is a tautology,
(3) but the disjunction of □p, □¬p and p ∧ ♢¬p is not a tautology
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Example 9

since Dℓ and Dr are Aristotelian isomorphic,
they belong to the same Aristotelian family
specifically: both diagrams are Jacoby-Sesmat-Blanché (JSB) hexagons

nevertheless, they have clear Boolean differences:

(4) the conjunction of ♢p, ♢¬p and □p ∨□¬p is a contradiction,
(4) but the conjunction of ♢p, ♢¬p and ¬p∨□p is not a contradiction
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Strong and weak JSB hexagons 10

generic description of a JSB hexagon: (FJSB ,RJSB )
(independent of concrete formulas, logical system, etc.)

FJSB = {α, β, γ,¬α,¬β,¬γ}
RJSB specifies the relations between the formulas of FJSB ,
e.g., the formulas α, β, γ are pairwise contrary

the Aristotelian family of JSB hexagons has two Boolean subtypes:
strong JSB hexagon: α ∨ β ∨ γ is a tautology
weak JSB hexagon: α ∨ β ∨ γ is not a tautology
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Boolean subtypes and bitstring analysis 11

consider different Boolean subtypes of some given Aristotelian family

different Boolean subtypes have different Boolean properties
e.g. strong vs. weak JSB hexagon ⇒ at least 4 Boolean differences

these differences can be summarized as follows:
different Boolean subtypes have different Boolean closures,
specifically: both diagrams are Jacoby-Sesmat-Blanché (JSB) hexagons

recall that bitstring length measures the size of the Boolean closure

different Boolean subtypes are encoded by means of bitstrings of
different lengths
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Example 12

our example of a strong JSB hexagon: (Fℓ,S5)

induces the partition ΠS5(Fℓ) := {□p,♢p ∧ ♢¬p,□¬p}
|ΠS5(Fℓ)| = 3 ⇒ bitstrings of length 3
Boolean closure: 23 = 8 elements, of which 23 − 2 = 6 are contingent

our example of a weak JSB hexagon: (Fr,S5)

induces the partition ΠS5(Fr) := {□p, p ∧ ♢¬p,¬p ∧ ♢p,□¬p}
|ΠS5(Fr)| = 4 ⇒ bitstrings of length 4
Boolean closure: 24 = 16 elements, of which 24 − 2 = 14 are contingent
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Example 13

this bitstring analysis summarizes all the individual Boolean differences

strong JSB bitstrings of length 3 weak bitstrings of length 4
¬γ ≡ α ∨ β 101 = 100 ∨ 001 ̸≡ 1011 ̸= 1000 ∨ 0001
γ ≡ ¬α ∧ ¬β 010 = 011 ∧ 110 ̸≡ 0100 ̸= 0111 ∧ 1110
α ∨ β ∨ γ ≡ ⊤ 100 ∨ 001 ∨ 010 = 111 ̸≡ 1000 ∨ 0001 ∨ 0100 ̸= 1111
¬α ∧ ¬β ∧ ¬γ ≡ ⊥ 011 ∧ 110 ∧ 101 = 000 ̸≡ 0111 ∧ 1110 ∧ 1011 ̸= 0000
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Boolean subtypes of the Buridan octagons 14

generic description of a Buridan octagon: (FBuri ,RBuri)

FBuri = {α, β1, β2, γ,¬α,¬β1,¬β2,¬γ}
RBuri : subalternations from α to β1, β2 to γ; unconnected β1, β2

the Buridan octagons come in three Boolean subtypes:
strong Buridan octagon α ≡ β1 ∧ β2 and γ ≡ β1 ∨ β2 length 4
intermediate Buridan octagon α ≡ β1 ∧ β2 XOR γ ≡ β1 ∨ β2 length 5
weak Buridan hexagon α ≡ β1 ∧ β2 nor γ ≡ β1 ∨ β2 length 6
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Example of a strong Buridan octagon: (Fprop,CPL) 15

induces the partition ΠCPL(Fprop) = {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q}
4 anchor formulas ⇒ bitstrings of length 4

p ∧ q is equivalent to the conjunction of p and q (1000 = 1100 ∧ 1010)
p ∨ q is equivalent to the disjunction of p and q (1110 = 1100 ∨ 1010)
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Example of a weak Buridan octagon: (Fmodsyl,FOS5) 16

fragment Fmodsyl of 8 de re modal formulas (with ampliation):
1. all S are necessarily P ∃x♢Sx ∧ ∀x(♢Sx → □Px) ∀□
2. all S are possibly P ∃x♢Sx ∧ ∀x(♢Sx → ♢Px) ∀♢
3. some S are necessarily P ∃x(♢Sx ∧□Px) ∃□
4. some S are possibly P ∃x(♢Sx ∧ ♢Px) ∃♢
5. all S are necessarily not P ∀x(♢Sx → □¬Px) ∀□¬
6. all S are possibly not P ∀x(♢Sx → ♢¬Px) ∀♢¬
7. some S are necessarily not P ¬∃x♢Sx ∨ ∃x(♢Sx ∧□¬Px) ∃□¬
8. some S are possibly not P ¬∃x♢Sx ∨ ∃x(♢Sx ∧ ♢¬Px) ∃♢¬

this induces the partition ΠFOS5(Fmodsyl):

{ ∀□,
∀♢ ∧ ∃□ ∧ ∃♢¬,
∀♢ ∧ ∀♢¬,
∃□ ∧ ∃□¬,
∀♢¬ ∧ ∃□¬ ∧ ∃♢,
∀□¬ }
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Example of a weak Buridan octagon: (Fmodsyl,FOS5) 17

6 anchor formulas ⇒ bitstrings of length 6

∀□ ̸≡ ∀♢ ∧ ∃□ (100000 ̸= 111000 ∧ 110100)
∃♢ ̸≡ ∀♢ ∨ ∃□ (111110 ̸= 111000 ∨ 110100)
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Example of an intermediate Buridan octagon: (Funusual,FOL) 18

fragment Funusual of 8 propositions ‘of unusual construction’:

1. all S all P are ∃xSx ∧ ∃yPy ∧ ∀x(Sx → ∀y(Py → x = y)) ∀∀
2. all S some P are ∃xSx ∧ ∀x(Sx → ∃y(Py ∧ x = y)) ∀∃
3. some S all P are ∃yPy ∧ ∃x(Sx ∧ ∀y(Py → x = y)) ∃∀
4. some S some P are ∃x(Sx ∧ ∃y(Py ∧ x = y)) ∃∃
5. all S all P are not ∀x(Sx → ∀y(Py → x ̸= y)) ∀∀¬
6. all S some P are not ¬∃yPy ∨ ∀x(Sx → ∃y(Py ∧ x ̸= y)) ∀∃¬
7. some S all P are not ¬∃xSx ∨ ∃x(Sx ∧ ∀y(Py → x ̸= y)) ∃∀¬
8. some S some P are not ¬∃xSx ∨ ¬∃yPy ∨ ∃x(Sx ∧ ∃y(Py ∧ x ̸= y)) ∃∃¬

this fragment induces the partition ΠFOL(Funusual):

{ ∀∀,
∀∃ ∧ ∀∃¬,
∃∀ ∧ ∃∀¬,
∀∃¬ ∧ ∃∀¬ ∧ ∃∃,
∀∀¬ }
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Example of an intermediate Buridan octagon: (Funusual,FOL) 19

5 anchor formulas ⇒ bitstrings of length 5

∀∀ ≡ ∀∃ ∧ ∃∀ (10000 = 11000 ∧ 10100)
∃∃ ̸≡ ∀∃ ∨ ∃∀ (11110 ̸= 11000 ∨ 10100)
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Boolean subtypes of the Keynes-Johnson octagons 20

generic description of a Keynes-Johnson octagon: (FKJ ,RKJ )

FKJ = {k1, k2, k3, k4,¬k1,¬k2,¬k3,¬k4}
RKJ : k1 and k3 are unconnected; k2 and k4 are unconnected;
contrarieties between k1 and k2, k1 and k4, k3 and k2, k3 and k4

the Keynes-Johnson octagons come in two Boolean subtypes:
strong Keynes-Johnson octagon

∨i=4
i=1 ki is a tautology length 6

weak Keynes-Johnson hexagon
∨i=4

i=1 ki is not a tautology length 7
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Example of a strong KJ octagon: (Fdeon,KD) 21

induces the partition ΠKD(Fdeon) = { p ∧ Pp ∧ P¬p, p ∧Op,
¬p ∧ Pp ∧ P¬p, ¬p ∧Op, p ∧O¬p, ¬p ∧O¬p }
6 anchor formulas ⇒ bitstrings of length 6
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Example of a weak KJ octagon: (Fsubneg,FOL∃) 22

induces the partition ΠFOL∃(Fsubneg) = {
∀x(Sx→ Px) ∧ ∀x(¬Sx→ ¬Px), ∀x(Sx→ Px) ∧ ∃x(¬Sx ∧ Px),
∀x(Sx→ ¬Px) ∧ ∀x(¬Sx→ Px), ∀x(Sx→ ¬Px) ∧ ∃x(¬Sx ∧ ¬Px),
∃x(Sx ∧ ¬Px) ∧ ∀x(¬Sx→ ¬Px), ∃x(Sx ∧ Px) ∧ ∀x(¬Sx→ Px),
∃x(Sx ∧ Px) ∧ ∃x(Sx ∧ ¬Px) ∧ ∃x(¬Sx ∧ Px) ∧ ∃x(¬Sx ∧ ¬Px) }
7 anchor formulas ⇒ bitstrings of length 7
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Boolean subtypes of the U12 hexagons 23

generic description of a U12 hexagon: (FU12 ,RU12 )
FU12 = {α, β, γ,¬α,¬β,¬γ}
RU12 : α, β, γ are pairwise unconnected

the U12 hexagons come in five Boolean subtypes:
U12 hexagons that require bitstrings of length 4, 5, 6, 7, 8
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Two examples of U12 hexagons 24

the fragment Fℓ = {p, q,¬p,¬q, p↔ q, p↔ ¬q} induces the partition
ΠCPL(Fℓ) = {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q} ⇒ length 4

the fragment Fr = {p, q, r,¬p,¬q,¬r} induces the partition
ΠCPL(Fr) = {p ∧ q ∧ r, p ∧ q ∧ ¬r, p ∧ ¬q ∧ r, p ∧ ¬q ∧ ¬r,¬p ∧ q ∧
r,¬p ∧ q ∧ ¬r,¬p ∧ ¬q ∧ r,¬p ∧ ¬q ∧ ¬r} ⇒ length 8
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Boolean homogeneity 25

some Aristotelian families do not have multiple Boolean subtypes:
they are Boolean homogeneous
all their members can be encoded using bitstrings of the same length

some examples:
the family of PCDs: requires only bitstrings of length 2
the family of classical squares: requires only bitstrings of length 3
the family of degenerate squares: requires only bitstrings of length 4
the family of SC hexagons: requires only bitstrings of length 4
the family of Lenzen octagons: requires only bitstrings of length 5

note:
the most well-known family (classical squares) is Boolean homogeneous
this might explain why the issue of Boolean subtypes is not very familiar
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A-consistency 26

what determines whether a given Aristotelian family A has multiple
Boolean subtypes or is rather Boolean homogeneous?

given fragment F = {φ1, . . . , φm} and logic S, recall that

ΠS(F) := {α ∈ L | α = ±φ1 ∧ · · · ∧ ±φm, and α is S-consistent}

(the elements α ∈ ΠS(F) are anchor formulas) � lecture 1

how to calculate the partition induced by the generic description
(FA,RA) of some Aristotelian family A
(recall: this is independent of any concrete logical system)

ΠA := {α ∈ L | α = ±φ1 ∧ · · · ∧ ±φm, and α is A-consistent}

an anchor formula α is A-consistent iff it does not contain two
conjuncts that are contradictory or contrary according to RA
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A-consistency and S-consistency 27

an anchor formula is
A-consistent iff it does not contain two conjuncts that are contradictory
or contrary according to the generic description of A (viz., RA)
A-inconsistent iff it does contain two conjuncts that are contradictory or
contrary according to the generic description of A (viz., RA)

lemma: if an anchor formula is A-inconsistent, then it is S-inconsistent
(contrapositive: if it is S-consistent, then it is A-consistent)

the converse does not hold:
an anchor formula can be S-inconsistent and yet A-consistent

concrete example: (p ∨ q) ∧ ¬p ∧ ¬q
this formula is CPL-inconsistent
this formula is A-consistent (for any Aristotelian family A)
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A-consistency and S-consistency: number of conjuncts 28

we have just seen:
if an anchor formula is A-inconsistent, then it is S-inconsistent
an anchor formula can be S-inconsistent and yet A-consistent
example: (p ∨ q) ∧ ¬p ∧ ¬q (three conjuncts)

lemma: consider an anchor formula with at most two conjuncts:
if that anchor formula is A-inconsistent, then it is S-inconsistent
if that anchor formula is S-inconsistent, then it is A-inconsistent

⇒ A-consistency guarantees S-consistency

lemma: consider an anchor formula with at least three conjuncts:
if that anchor formula is A-inconsistent, then it is S-inconsistent
that anchor formula can be S-inconsistent and yet A-consistent

⇒ A-consistency does not guarantee S-consistency
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Boolean subtypes vs. Boolean homogeneity 29

what determines whether a given Aristotelian family A has multiple
Boolean subtypes or is rather Boolean homogeneous?

ΠA = {α ∈ L | α = ±φ1 ∧ · · · ∧ ±φm, and α is A-consistent}

each anchor formula α ∈ ΠA is A-consistent
if α has at most two conjuncts, it is also guaranteed to be S-consistent
if α has at least three conjuncts, it is not guaranteed to be S-consistent

case distinction:

all α ∈ ΠA are guaranteed to be S-consistent
⇒ A is Boolean homogeneous, with single bitstring length |ΠA|

n > 0 formulas in ΠA are not guaranteed to be S-consistent
⇒ A has n+ 1 Boolean subtypes, with bitstring lengths
⇒ |ΠA| − n, . . . , |ΠA| − 1, |ΠA|
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Example 1: JSB hexagon 30

anchor formulas in ΠJSB :
α guaranteed to be S-consistent
β guaranteed to be S-consistent
γ guaranteed to be S-consistent
¬α ∧ ¬β ∧ ¬γ not guaranteed to be S-consistent

the Aristotelian family of JSB hexagons has 2 Boolean subtypes:
length 3, corresponding to partition {α, β, γ}
length 4, corresponding to partition {α, β, γ,¬α ∧ ¬β ∧ ¬γ}
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Example 2: Buridan octagon 31

anchor formulas in ΠBuri :
α guaranteed to be S-consistent
¬α ∧ β1 ∧ β2 not guaranteed to be S-consistent
β1 ∧ ¬β2 guaranteed to be S-consistent
¬β1 ∧ β2 guaranteed to be S-consistent
¬β1 ∧ ¬β2 ∧ γ not guaranteed to be S-consistent
¬γ guaranteed to be S-consistent

the Aristotelian family of Buridan octagons has 3 Boolean subtypes:
length 6, length 5, length 4
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Example 3: Keynes-Johnson octagon 32

anchor formulas in ΠKJ :
k1 ∧ k3 guaranteed to be S-consistent
k1 ∧ ¬k3 guaranteed to be S-consistent
k2 ∧ k4 guaranteed to be S-consistent
k2 ∧ ¬k4 guaranteed to be S-consistent
¬k1 ∧ k3 guaranteed to be S-consistent
¬k2 ∧ k4 guaranteed to be S-consistent
¬k1 ∧ ¬k2 ∧ ¬k3 ∧ ¬k4 not guaranteed to be S-consistent

the KJ octagons have 2 Boolean subtypes: length 7, length 6
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Example 4: classical square 33

anchor formulas in Πclass_sq :
α guaranteed to be S-consistent
β guaranteed to be S-consistent
¬α ∧ ¬β guaranteed to be S-consistent

the Aristotelian family of classical squares is Boolean homogeneous
(length 3)
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Example 5: Sherwood-Czezowski hexagon 34

anchor formulas in ΠSC :
α guaranteed to be S-consistent
¬α ∧ β guaranteed to be S-consistent
¬β ∧ γ guaranteed to be S-consistent
¬γ guaranteed to be S-consistent

the Aristotelian family of SC hexagons is Boolean homogeneous
(length 4)
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Exceptional case: U12 hexagon 35

anchor formulas in ΠU12 :
α ∧ β ∧ γ not guaranteed to be S-consistent
α ∧ β ∧ ¬γ not guaranteed to be S-consistent
α ∧ ¬β ∧ γ not guaranteed to be S-consistent
α ∧ ¬β ∧ ¬γ not guaranteed to be S-consistent
¬α ∧ β ∧ γ not guaranteed to be S-consistent
¬α ∧ β ∧ ¬γ not guaranteed to be S-consistent
¬α ∧ ¬β ∧ γ not guaranteed to be S-consistent
¬α ∧ ¬β ∧ ¬γ not guaranteed to be S-consistent
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Exceptional case: U12 hexagon 36

anchor formulas in ΠU12 :
α ∧ β ∧ γ not guaranteed to be S-consistent
α ∧ β ∧ ¬γ not guaranteed to be S-consistent
α ∧ ¬β ∧ γ not guaranteed to be S-consistent
α ∧ ¬β ∧ ¬γ not guaranteed to be S-consistent
¬α ∧ β ∧ γ not guaranteed to be S-consistent
¬α ∧ β ∧ ¬γ not guaranteed to be S-consistent
¬α ∧ ¬β ∧ γ not guaranteed to be S-consistent
¬α ∧ ¬β ∧ ¬γ not guaranteed to be S-consistent

misguided prediction: the Aristotelian family of U12 hexagons has
9 Boolean subtypes: length 8, 7, 6, 5, 4, 3, 2, 1, 0

but encoding unconnectedness requires bitstrings of length at least 4
� lecture 2

correct analysis: the Aristotelian family of U12 hexagons has
5 Boolean subtypes: length 8, 7, 6, 5, 4
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Broader context 37

ongoing research effort in logical geometry:
develop a systematic typology of Aristotelian diagrams

for each diagram size:
what are the Aristotelian families with that size?

for each Aristotelian family:
what are the Boolean subfamilies of that Aristotelian family?

further series of Aristotelian families:
e.g. αn-structure: n pairwise contrary formulas, and their negations
α1 = PCD, α2 = classical square, α3 = JSB, α4 = Moretti . . .
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Broader context 38
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Broader context 39

recall from lecture 1:
if F only contains S-contingent formulas and is closed under negation,
then ⌈log2(|F|+ 2)⌉ ≤ |ΠS(F)| ≤ 2|F|/2

some specific cases:
|F| = 2 ⇒ 2 = ⌈log2(2 + 2)⌉ ≤ |ΠS(F)| ≤ 22/2 = 2
|F| = 4 ⇒ 3 = ⌈log2(4 + 2)⌉ ≤ |ΠS(F)| ≤ 24/2 = 4
|F| = 6 ⇒ 3 = ⌈log2(6 + 2)⌉ ≤ |ΠS(F)| ≤ 26/2 = 8
|F| = 8 ⇒ 4 = ⌈log2(8 + 2)⌉ ≤ |ΠS(F)| ≤ 28/2 = 16
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Broader context 40

recall from lecture 1:
if F only contains S-contingent formulas and is closed under negation,
then 2⌈log2(|ΠS(F)|)⌉ ≤ |F| ≤ 2|ΠS(F)| − 2

some specific cases:
|ΠS(F)| = 2 ⇒ 2 = 2⌈log2(2)⌉ ≤ |F| ≤ 22 − 2 = 2
|ΠS(F)| = 3 ⇒ 4 = 2⌈log2(3)⌉ ≤ |F| ≤ 23 − 2 = 6
|ΠS(F)| = 4 ⇒ 4 = 2⌈log2(4)⌉ ≤ |F| ≤ 24 − 2 = 14
|ΠS(F)| = 5 ⇒ 6 = 2⌈log2(5)⌉ ≤ |F| ≤ 25 − 2 = 30
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Structure of the course 41

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part I
� Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
� Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part II
� Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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Logic-sensitivity of the Aristotelian diagrams 42

Aristotelian diagrams are (in various ways) sensitive to the specific
details of the underlying logical system

informal definition: ‘φ and ψ cannot be true together’
model-theoretic definition: |=S ¬(φ ∧ ψ)

this point has also been emphasized by Claudio Pizzi:
“An obvious but frequently neglected proviso concerning the squares of
oppositions is that the relations which are claimed to hold between the
formulas of the square only subsist with reference to some given
background system” (2016)
“an ordered 4-[tu]ple is an Aristotelian square always with respect to some
system S” (2017)
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Basic example 43

one fragment F := {□p,♢p,□¬p,♢¬p}
two logical systems:

K: basic normal modal logic (all Kripke models)
KD: axiom □p→ ♢p (or ♢⊤) (serial Kripke models)

(F ,K) is a degenerate square
(F ,KD) is a classical square
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Basic example: bitstring analysis 44

ΠK(F) = {□p ∧ ♢p,♢p ∧ ♢¬p,□¬p ∧ ♢¬p,□p ∧□¬p} (length 4)
ΠKD(F) = {□p,♢p ∧ ♢¬p,□¬p} (length 3)

from K to KD: delete the fourth bit position
□p ∧□¬p is K-consistent, but KD-inconsistent
ΠKD(F) = {α ∈ ΠK(F) | α is KD-consistent}
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Aristotelian vs. duality relations 45

Aristotelian relations are logic-sensitive:
□p and □¬p are K-unconnected, but KD-contrary
□p and ♢p are K-unconnected, but in KD-subalternation

duality relations are not (or rather: less) logic-sensitive:
□p and □¬p are each other’s internal negation, in K as well as KD
□p and ♢p are each other’s dual, in K as well as KD

duality relations are sensitive to the underlying logic,
but only to non-Boolean aspects

K and KD are both classical Boolean logics ⇒ no differences in duality
e.g. p∧ q and p∨ q are dual in classical logic, but not in intuitionistic logic
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Logic-sensitivity of the opposition relations 46

recall from lecture 2:
AGS is hybrid between OGS and IGS

non-contradiction: NCDS(φ,ψ) iff ̸|=S ¬(φ ∧ ψ) and ̸|=S ¬(¬φ ∧ ¬ψ)

consider two logics W,S, and assume that for all φ: |=W φ ⇒ |=S φ

theorem: from the weaker logic to the stronger logic
if CDW(φ,ψ) then CDS(φ,ψ)
if CW(φ,ψ) then CS(φ,ψ) or CDS(φ,ψ)
if SCW(φ,ψ) then SCS(φ,ψ) or CDS(φ,ψ)
if NCDW(φ,ψ) then NCDS(φ,ψ) or CS(φ,ψ) or SCS(φ,ψ) or CDS(φ,ψ)

theorem: from the stronger logic to the weaker logic
if CDS(φ,ψ) then CDW(φ,ψ) or CW(φ,ψ) or SCW(φ,ψ) or NCDW(φ,ψ)
if CS(φ,ψ) then CW(φ,ψ) or NCDW(φ,ψ)
if SCS(φ,ψ) then SCW(φ,ψ) or NCDW(φ,ψ)
if NCDS(φ,ψ) then NCDW(φ,ψ)
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Logic-sensitivity and informativity 47

diagrammatic summary of the two theorems:
going to a stronger logic can make you go up in the diagram
going to a weaker logic can make you go down in the diagram

recall the informativity ordering ≤∀
i of OG � lecture 2

theorem: the following are equivalent:
S is at least as strong as W
for all φ,ψ: if RW(φ,ψ) and R′

S(φ,ψ), then R ≤∀
i R

′
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Logic-sensitivity of the implication relations 48

a completely analogous story can be told about the implication relations

summary:
going to a stronger logic can make you go up in the diagram
going to a weaker logic can make you go down in the diagram
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Diagrammatic sources of logic-sensitivity 49

sources of logic-sensitivity in Aristotelian diagrams:
logic-sensitivity of the Aristotelian (opp./imp.) relations themselves
the condition that Aristotelian diagrams only contain pairwise
non-equivalent formulas
the condition that Aristotelian diagrams only contain contingent formulas

equivalence is a logic-sensitive notion:
two formulas might be equivalent in one logic,
and not equivalent in another logic

contingency is a logic-sensitive notion:
a formula might be contingent in one logic, and not in another logic
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The non-equivalence condition: example 50

one fragment F := {□□p,□p,♢♢¬p,♢¬p}
two logical systems:

KT: axiom □p→ p (reflexive Kripke models)
KT4: axioms □p→ p, □p→ □□p (refl., transitive Kripke models)

(F ,KT) is a classical square
(F ,KT4) is a PCD

we go from CKT(□□p,♢¬p) to CDKT4(□□p,♢¬p)
we go from LIKT(□□p,□p) to BIKT4(□□p,□p)
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The non-equivalence condition: bitstring analysis 51

ΠKT(F) = {□□p,□p ∧ ♢♢¬p,♢¬p} (length 3)
ΠKT4(F) = {□p,♢¬p} (length 2)

from KT to KT4: delete the second bit position
□p ∧ ♢♢¬p is KT-consistent, but KT4-inconsistent
ΠKT4(F) = {α ∈ ΠKT(F) | α is KT4-consistent}
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The contingency condition: example 52

one fragment F := {♢p,♢⊤,□¬p,□⊥}
two logical systems:

K: basic normal modal logic (all Kripke models)
KD: axiom □p→ ♢p (or ♢⊤) (serial Kripke models)

(F ,K) is a classical square
(F ,KD) is a PCD

♢⊤ is contingent in K, but a tautology in KD
□⊥ is contingent in K, but a contradiction in KD
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The contingency condition: bitstring analysis 53

ΠK(F) = {♢p,♢⊤ ∧□¬p,□⊥} (length 3)
ΠKD(F) = {♢p,□¬p} (length 2)

from K to KD: delete the third bit position
□⊥ is K-consistent, but KD-inconsistent
ΠKD(F) = {α ∈ ΠK(F) | α is KD-consistent}
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Structure of the course 54

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part I
� Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
� Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part II
� Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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Logic-sensitivity and Boolean subtypes 55

logic-sensitivity: one fragment, two logics ⇒ two different diagrams
classical square vs. degenerate square
classical square vs. PCD
JSB hexagon vs. classical square
Buridan octagon vs. Lenzen octagon

until now: the two diagrams belong to different Aristotelian families

also possible:
the two diagrams belong to the same Aristotelian family
but to different Boolean subtypes of that Aristotelian family
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Logic-sensitivity and Boolean subtypes: example 1 56

one fragment F , two logical systems: K and KD
F := {□p∧♢p,□p∨♢p,□¬p∧♢¬p,□¬p∨♢¬p,□p∨□¬p,♢p∧♢¬p}

(F ,K) is a weak JSB hexagon
(F ,KD) is a strong JSB hexagon

̸|=K (□p ∧ ♢p) ∨ (□¬p ∧ ♢¬p) ∨ (♢p ∧ ♢¬p)
|=KD (□p ∧ ♢p) ∨ (□¬p ∧ ♢¬p) ∨ (♢p ∧ ♢¬p)
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Logic-sensitivity and Boolean subtypes: bitstring analysis 57

ΠK(F) = {□p ∧ ♢p,♢p ∧ ♢¬p,□¬p ∧ ♢¬p, φlong} (length 4)
ΠKD(F) = {□p,♢p ∧ ♢¬p,□¬p} (length 3)

φlong := (□p ∨ ♢p) ∧ (□¬p ∨ ♢¬p) ∧ (□p ∨□¬p)
from K to KD: delete the fourth bit position
(φlong is K-consistent, but KD-inconsistent)
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Logic-sensitivity and Boolean subtypes: example 2 58

one fragment F , three logics: KT, KT4 (= S4) and KT45 (= S5)
F := {□p ∧□q,♢□p,♢□q,♢♢□p ∨ ♢♢□q} (+ negations)

(F ,KT) is a weak Buridan octagon
(F ,KT4) is an intermediate Buridan octagon
(F ,KT45) is a strong Buridan octagon
□p ∧□q ̸≡KT45 ♢□p ∧ ♢□q and ♢♢□p ∨ ♢♢□q ̸≡KT45 ♢□p ∨ ♢□q
□p ∧□q ̸≡KT45 ♢□p ∧ ♢□q and ♢♢□p ∨ ♢♢□q ≡KT45 ♢□p ∨ ♢□q
□p ∧□q ≡KT45 ♢□p ∧ ♢□q and ♢♢□p ∨ ♢♢□q ≡KT45 ♢□p ∨ ♢□q

Introduction to Logical Geometry – Part 4



Cross-connections among different types of logic-sensitivity 59

many different types of logic-sensitivity:
based on the Aristotelian relations
based on the diagrammatic condition of non-equivalence
based on the diagrammatic condition of contingency
based on Boolean subtypes

there are many cross-connections among these different types

example:
for any 4-formula fragment F = {φ,ψ,¬φ,¬ψ}, define a 6-formula
fragment H(F) := {φ ∧ ψ,φ ∨ ψ,¬φ ∧ ¬ψ,¬φ ∨ ¬ψ,φ ∨ ¬ψ,¬φ ∧ ψ}

theorem: for any logical system S:
▶ if (F ,S) is a degenerate square, then (H(F), S) is a weak JSB hexagon
▶ if (F ,S) is a classical square, then (H(F),S) is a strong JSB hexagon
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The End 60

Thank you!

Questions?

More info: www.logicalgeometry.org
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