

Introduction to Logical Geometry 2. Abstract-Logical Properties of Aristotelian Diagrams, Part I

Lorenz Demey & Hans Smessaert

ESSLLI 2024, Leuven

- 1. Basic Concepts, Bitstring Semantics and (Iso)morphisms
- 2. Abstract-Logical Properties of Aristotelian Diagrams, Part I **Aristotelian, Opposition, Implication and Duality Relations**
- 3. Visual-Geometric Properties of Aristotelian Diagrams **IFF** Informational Equivalence, Cognition, Symmetry and Distance
- 4. Abstract-Logical Properties of Aristotelian Diagrams, Part II **B** Boolean Structure and Logic-Sensitivity
- 5. Case Studies and Philosophical Outlook

KU LEUVEI

- 1. Basic Concepts, Bitstring Semantics and (Iso)morphisms
- 2. Abstract-Logical Properties of Aristotelian Diagrams, Part I E^{max} Aristotelian, Opposition, Implication and Duality Relations
- 3. Visual-Geometric Properties of Aristotelian Diagrams **IFF** Informational Equivalence, Cognition, Symmetry and Distance
- 4. Abstract-Logical Properties of Aristotelian Diagrams, Part II **B** Boolean Structure and Logic-Sensitivity
- 5. Case Studies and Philosophical Outlook

KU LEUVEI

- recall the **Aristotelian geometry** $AG_S = \{CD_S, C_S, SC_S, SA_S\}$ (relative to an appropriate logical system S)
- $\bullet \varphi$ and ψ are said to be

S-contradictory (CD_5) iff $\models_S \neg(\varphi \land \psi)$ and $\models_S \neg(\neg \varphi \land \neg \psi)$ S-contrary (C_5) iff $\models_S \neg(\varphi \land \psi)$ and $\not\models_S \neg(\neg \varphi \land \neg \psi)$ S-subcontrary (SC_5) iff $\not\models_S \neg(\varphi \land \psi)$ and $\models_S \neg(\neg \varphi \land \neg \psi)$ in S-subalternation (SA_S) iff $\models_S \varphi \rightarrow \psi$ and $\nmodels_S \psi \rightarrow \varphi$

 \bullet Aristotelian square of opposition: 4 propositions $+$ the Aristotelian relations holding between them

KU LEUV

Generalizations of the Aristotelian square 5

- throughout history: several proposals to extend the square of opposition
	- more propositions, more relations
	- larger and more complex diagrams
	- hexagons, octagons, cubes and other three-dimensional figures
- cf. the motivating examples from lecture 1

KU LEUV

- \bullet the square and its extensions: various types of hexagons, octagons, etc.
- the extensions are very interesting
	- well-motivated (propositional logic, modal logic S5)
	- **•** throughout history (William of Sherwood, John Buridan, John N. Keynes)
	- interrelations (e.g. JSB hexagon is Boolean closure of classical square)
- yet there is a stunning discrepancy:
	- (nearly) all logicians know about the Aristotelian square of opposition
	- (nearly) no logicians know about the other Aristotelian diagrams
- o our explanation: "the Aristotelian square is very **informative**"
	- this claim sounds intuitive, but is also vague
	- we will provide a precise and well-motivated framework

KU LEU

• recall the Aristotelian geometry AG_S : φ and ψ are said to be

S-contradictory (CD_S) iff $\models_S \neg(\varphi \land \psi)$ and $\models_S \neg(\neg \varphi \land \neg \psi)$ S-contrary (C_S) iff $\models_S \neg(\varphi \land \psi)$ and $\nvdash_S \neg(\neg \varphi \land \neg \psi)$ S-subcontrary (SC_5) iff $\not\models_S \neg(\varphi \land \psi)$ and $\models_S \neg(\neg \varphi \land \neg \psi)$ in S-subalternation (SA_S) iff $\models_S \varphi \rightarrow \psi$ and $\nmodels_S \psi \rightarrow \varphi$

- problems with the relations of AG_S :
	- not mutually exclusive: e.g. \perp and p are contrary and subaltern in CPL (lemma: if φ, ψ are contingent, they stand in at most one Arist. relation)
	- not exhaustive: e.g. p and $\diamond p \land \lozenge \neg p$ are in no Arist. relation at all in S5 (lemma: if φ is contingent, then φ stands in no Arist. relation to itself)
	- **conceptual confusion**: can be true/false together vs. truth propagation
		- \triangleright 'together' \rightsquigarrow symmetrical relations (undirected)
		- \triangleright 'propagation' \rightsquigarrow asymmetrical relations (directed)

[Introduction to Logical Geometry](#page-0-0) – Part 2

- replace subalternation with 'non-contradiction'
- two formulas φ and ψ are said to be
	- S-contradictory (CD_S) iff $\models_S \neg(\varphi \land \psi)$ and $\models_S \neg(\neg \varphi \land \neg \psi)$
S-contrary (C_S) iff $\models_S \neg(\varphi \land \psi)$ and $\not\models_S \neg(\neg \varphi \land \neg \psi)$ $\text{aff } \models_{\mathsf{S}} \neg(\varphi \land \psi)$ and $\not\models_{\mathsf{S}} \neg(\neg \varphi \land \neg \psi)$ S-subcontrary (SC_S) iff $\nvDash_S \neg(\varphi \land \psi)$ and $\models_S \neg(\neg \varphi \land \neg \psi)$ S-non-contradictory (NCD_S) iff $\not\models_{S} \neg(\varphi \wedge \psi)$ and $\not\models_{S} \neg(\neg \varphi \wedge \neg \psi)$
- the opposition geometry for S: $\mathcal{OG}_S := \{CD_S, C_S, SC_S, NCD_S\}$
- Carnapian state descriptions ('rows 1 and 4 of a truth table'):
	- $\Sigma_1(\varphi, \psi) := \varphi \wedge \psi$ (note: 'symmetry' between $\bullet \ \Sigma_4(\varphi, \psi) := \neg \varphi \wedge \neg \psi$ conjuncts of Σ_1 and Σ_4)
- \bullet $\mathcal{O}\mathcal{G}_S$ is defined of terms $\neg \Sigma_1$ and $\neg \Sigma_4$

The implication geometry

- subalternation: truth propagation 'from left to right' \rightsquigarrow left-implication
- vary the 'direction' of truth propagation
- two formulas φ and ψ are said to be in

- the implication geometry for S: $IG_S := \{Bl_S, Ll_S, Rl_S, Nl_S\}$
- Carnapian state descriptions ('rows 2 and 3 of a truth table'):
	-
	-

• $\Sigma_2(\varphi, \psi) := \varphi \wedge \neg \psi$ (note: 'asymmetry' between • $\Sigma_3(\varphi, \psi) := \neg \varphi \wedge \psi$ conjuncts of Σ_2 and Σ_3)

KU LEUVEN

 \bullet \mathcal{IG}_5 is defined of terms $\neg \Sigma_2$ and $\neg \Sigma_3$

Motivating the new geometries, \vert 10

- **•** two new geometries: opposition geometry and implication geometry
- **•** together, they solve the problems of the Aristotelian geometry
- \bullet the relations of $\mathcal{O}G_{S}$ are mutually exclusive and jointly exhaustive: each pair of formulas stands in exactly one opposition relation
- \bullet the relations of IG_{S} are mutually exclusive and jointly exhaustive: each pair of formulas stands in exactly one implication relation
- no longer conceptual confusion:
	- \circ $\mathcal{O}\mathcal{G}_S$ is uniformly defined in terms of being able to be true/false together (cf. the symmetrical state descriptions Σ_1 and Σ_4)
	- IG_S is uniformly defined in terms of truth propagation (cf. the asymmetrical state descriptions Σ_2 and Σ_3)

[Introduction to Logical Geometry](#page-0-0) – Part 2

KU LEL

• clear link with Correia (2012):

two distinct philosophical traditions in interpreting the square:

-
-

• square as a theory of negation commentaries on *De Interpretatione* • square as a theory of consequence commentaries on Prior Analytics

KU LEUV

- **•** terminological remark:
	- 'square of opposition', 'hexagon of opposition', 'cube of opposition'
	- misnomer: exclusive focus on $\mathcal{O}G_{S}$, while ignoring IG_{S}
	- more appropriate terminology: 'Aristotelian square' etc.
	- concrete examples from the literature:
		- ▶ 'square of opposition and equipollence' (John Mikhail, 2007)
		- ▶ 'square of implication and opposition' (W. E. Johnson, 1922)
		- ▶ 'octagon of implication and opposition' (W. E. Johnson, 1922)

• opposition and implication geometry are conceptually independent yet there's a clear relationship between them (symmetry breaking):

$$
CD_{S}(\varphi, \psi) \Leftrightarrow Bl_{S}(\varphi, \neg \psi)
$$

\n
$$
C_{S}(\varphi, \psi) \Leftrightarrow L_{S}(\varphi, \neg \psi)
$$

\n
$$
SC_{S}(\varphi, \psi) \Leftrightarrow R_{S}(\varphi, \neg \psi)
$$

\n
$$
NCD_{S}(\varphi, \psi) \Leftrightarrow N_{S}(\varphi, \neg \psi)
$$

both geometries are also internally structured:

KU LEUVEN

- **•** given φ, ψ , we define a binary, truth-functional connective $\circ^{(\varphi,\psi)}=(\circ_1,\circ_2,\circ_3,\circ_4)\in\{0,1\}^4.$
	- $\bullet \varphi, \psi$ stand in exactly one opposition relation

for $i = 1, 4$, define $\circ_i := \begin{cases} 0 & \text{if } \models_S \neg \Sigma_i(\varphi, \psi) \\ 1 & \text{if } \models \Box \Box(\varphi, \psi) \end{cases}$ 1 if $\not\models_{\mathsf{S}} \neg \Sigma_i(\varphi, \psi)$

- $\bullet \varphi, \psi$ stand in exactly one implication relation for $i = 2, 3$, define $\circ_i := \begin{cases} 0 & \text{if } \models_S \neg \Sigma_i(\varphi, \psi) \\ 1 & \text{if } \models_S \neg \Sigma_i(\psi, \psi) \end{cases}$ 1 if $\not\models_{\mathsf{S}} \neg \Sigma_i(\varphi, \psi)$
- **theorem**: for all φ, ψ , it holds that $\models \varphi \circ ^{(\varphi, \psi)} \psi$
	- e.g.: if $\mathsf{SC}_\mathsf{S}(\varphi, \psi)$ and $\mathsf{N}\mathsf{IS}(\varphi, \psi)$, then $\circ^{(\varphi, \psi)} = (1,1,1,0)$, so $\models_\mathsf{S} \varphi \lor \psi$ e.g.: if $\mathsf{C}_\mathsf{S}(\varphi,\psi)$ and $\mathsf{R}\mathsf{I}_\mathsf{S}(\varphi,\psi)$, then $\circ^{(\varphi,\psi)} = (0,1,0,1)$, so $\models_\mathsf{S} \neg \psi$
- **theorem**: if φ and ψ are contingent, they can stand in only 7 of the possible 16 (= 4×4) combinations of an opp. and an imp. relation

KU LEUVEN

Information as range 14

- **e** general idea: the informativity of a statement σ is inversely correlated with the size of its information range $\mathbb{I}(\sigma)$
- **informativity ordering** \leq_i : $\sigma \leq_i \tau$ iff $\mathbb{I}(\sigma) \supseteq \mathbb{I}(\tau)$
- we are interested in statements of the form $R_S(\varphi, \psi)$, with $R_S \in \mathcal{OG}_S \cup \mathcal{IG}_S$
- \bullet $\mathbb{I}(R_{\mathsf{S}}(\varphi,\psi)) := {\mathbb{M}} \in \mathcal{C}_{\mathsf{S}} | \mathbb{M}$ is compatible with $R_{\mathsf{S}}(\varphi,\psi)$
- a model M of the logic S is said to be **compatible** with $R_S(\varphi, \psi)$ iff $\textsf{for all } 1 \leq i \leq 4: \big(R_{\mathsf{S}}(\varphi,\psi) \ \Rightarrow \models_{\mathsf{S}} \neg \Sigma_i(\varphi,\psi)\big) \Longrightarrow \mathbb{M} \models \neg \Sigma_i(\varphi,\psi)$
- lift informativity ordering from statements $R_S(\varphi, \psi)$ to relations R_S : $R_\mathsf{S} \leq_i^\forall S_\mathsf{S}$ iff $\forall \varphi, \psi : R_\mathsf{S}(\varphi, \psi) \leq_i S_\mathsf{S}(\varphi, \psi)$

[Introduction to Logical Geometry](#page-0-0) – Part 2

KU LEUV

Information in the opposition and implication geometries 15

- for $1 \leq i \leq 4$, models of type i are those that make $\Sigma_i(\varphi, \psi)$ true
- informativity of the opposition and implication relations:

KU LEUVEN

- **•** close match between formal account and intuitions:
	- \bullet e.g. CD_S is more informative than C_S
	- if φ is known,
		- **Example 1** announcing $CD_S(\varphi, \psi)$ uniquely determines ψ
		- **•** announcing $C_S(\varphi, \psi)$ does not uniquely determine ψ

• combinatorial results on finite Boolean algebras (\sim bitstrings!)

- Boolean algebra $\mathbb B$ with 2^n formulas, formula of level i:
	- \blacktriangleright 1 contradictory
	- ▶ $2^{n-i} 1$ contraries and $2^i 1$ subcontraries
	- ▶ $(2^{n-i}-1)(2^i-1)$ non-contradictories
- $1 < 2^{n-i} 1, 2^i 1 < (2^{n-i} 1)(2^i 1)$ iff $1 < i < n-1$
- **o** coherence with earlier results:
	- \circ $\mathcal{O}\mathcal{G}_S$ and \mathcal{IG}_S yield isomorphic informativity lattices
	- $CDs(\varphi, \psi) \Leftrightarrow Bs(\varphi, \neg \psi)$ etc.

KU LEU

- why is the Aristotelian square special?
- o our answer: because it is very informative
	- it is a very informative **diagram** (viz. no unconnectedness)
	- in a very informative **geometry** (viz. the Aristotelian geometry)

Informativity of the Aristotelian geometry, I and 18

- Aristotelian geometry: hybrid between
	- opposition geometry: contradiction, contrariety, subcontrariety
	- implication geometry: left-implication (subalternation)
- **•** these relations are highly informative (in their geometries)

[Introduction to Logical Geometry](#page-0-0) – Part 2

- **•** given any two formulas:
	- \bullet they stand in exactly one opposition relation R
	- \bullet they stand in exactly one implication relation S
- o theorem:
	- if R is strictly more informative than S , then R is Aristotelian
	- if S is strictly more informative than R , then S is Aristotelian
- three examples (in S5):
	- $\Box p$ and $\Diamond p$: non-contradiction and **left-implication**
	- \bullet $\Box p$ and $\Box \neg p$: **contrariety** and non-implication
	- $\bullet \Diamond p$ and $\Box \neg p$: **contradiction** and non-implication

[Introduction to Logical Geometry](#page-0-0) – Part 2

KUL

Unconnectedness 20

- given any two formulas: one opposition relation, one implication relation
- what if neither relation is strictly more informative than the other?
- \bullet theorem: this can only occur in one case: $NCD + NI$ (unconnectedness)

\bullet Aristotelian gap $=$ information gap

- no Aristotelian relation at all (recall that AG_S is not exhaustive)
- **e** combination of the two least informative relations

[Introduction to Logical Geometry](#page-0-0) – Part 2

- recall the four-condition characterization of unconnectedness:
	- ϕ and ψ can be true together cf. Σ₁(φ, ψ)
 ϕ can be true while ψ is false cf. Σ₂(φ, ψ)
		- ϕ φ can be true while ψ is false cf. Σ₂(φ, ψ)
 ϕ φ can be false while ψ is true cf. Σ₃(φ, ψ)
		- \bullet φ can be false while ψ is true cf. Σ₃(φ, ψ)
 \bullet φ and ψ can be false together cf. Σ₄(φ, ψ)
		- $\bullet \varphi$ and ψ can be false together

- unconnectedness as the combination of non-contradiction (Σ_1, Σ_4) and non-implication (Σ_2, Σ_3)
- **•** encoding unconnectedness requires **bitstrings of length at least 4**
	- if $\mathbb{B}_{\mathsf{S}}(\mathcal{F}) \cong \{0,1\}^n$ for $n < 4$, then F does not contain any pair of S-unconnected formulas
	- if F contains at least one pair of S-unconnected formulas, then $\mathbb{B}_{\mathsf{S}}(\mathcal{F})\cong \{0,1\}^n$ for $n\geq 4$

• no unconnectedness in the classical Aristotelian square
 $\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}$

no unconnectedness in the Jacoby-Sesmat-Blanché hexagon

 $\Box \neg p$

KU LEUVEN

- unconnectedness in the Béziau octagon
- e.g. p and $\Diamond p \land \Diamond \neg p$ are unconnected

[Introduction to Logical Geometry](#page-0-0) – Part 2

Summary: opposition, implication and information 24

- **•** the Aristotelian **geometry** is hybrid between opposition and implication
- **•** in order to maximize informativity

 \Rightarrow applies to all Aristotelian diagrams

- **o** on the level of individual **diagrams**: avoid unconnectedness
- in order to minimize uninformativity
	- \Rightarrow some Aristotelian diagrams succeed better than others
		- classical square, JSB hexagon, SC hexagon don't have unconnectedness
		- Béziau octagon (and many other diagrams) do have unconnectedness
- Q: what about, say, the JSB hexagon and SC hexagon? (equally informative as the square, yet less widely known)
- A: this requires yet another geometry: **duality**

KU LEU

- 1. Basic Concepts, Bitstring Semantics and (Iso)morphisms
- 2. Abstract-Logical Properties of Aristotelian Diagrams, Part I **Aristotelian**, Opposition, Implication and Duality Relations
- 3. Visual-Geometric Properties of Aristotelian Diagrams **IFF** Informational Equivalence, Cognition, Symmetry and Distance
- 4. Abstract-Logical Properties of Aristotelian Diagrams, Part II **B** Boolean Structure and Logic-Sensitivity
- 5. Case Studies and Philosophical Outlook

square of opposition:

- visually represents the **Aristotelian relations** of contradiction, contrariety, subcontrariety and subalternation
- nearly always also exhibits another type of logical relations, viz. the duality relations of internal negation, external negation and duality
- based on the concrete examples found in literature, the notions of Aristotelian square and duality square seem almost co-extensional
- o but: clear conceptual differences between the two!
- **•** the logical and visual properties of Aristotelian and duality diagrams in isolation are relatively well-understood

KU LEUV

Aims and claims of this part of the lecture:

- **o** get clearer picture of **interconnections** between the two types of relations
- introduce a new type of diagram to visualise these interconnections: the Aristotelian/Duality Multigraph (ADM)
- **o octagons** are natural extensions/generalizations of the classical square
	- **•** from an Aristotelian perspective and
	- from a duality perspective
- **•** the **correspondence** between Aristotelian and duality relations:
	- is **lost** on the level of individual relations and diagrams
	- **.** is **maintained** on a more abstract level

KU LEU

some standard examples:

o the contradiction relation:

- most important and informative Aristotelian relation: each proposition φ has a unique contradictory (up to logical equivalence), viz. $\neg \varphi$
- almost all Aristotelian diagrams in the literature are closed under contradiction: if the diagram contains φ , then it also contains $\neg \varphi$ \Rightarrow visualized by means of central symmetry $\qquad \qquad \qquad \blacksquare$ lecture 3
- the propositions in an Aristotelian diagram can naturally be grouped into pairs of contradictory propositions (PCDs)

Aristotelian diagrams:

- remember the shift of perspective:
	- \blacktriangleright a square does not really consist of 4 individual propositions
	- ▶ rather, a square consists of 2 PCDs
- natural way of extending the square: **adding more PCDs**:
	- ▶ logically: from 2 PCDs to 3 PCDs to 4 PCDs to ...
	- \blacktriangleright geometrically: from square to hexagon to octagon to ...

KU LEUVER

Duality relations and squares **30** and $\frac{1}{2}$ and

- **•** suppose that two formulas φ and ψ are the results of applying n-ary operators O_{φ} and O_{ψ} to the same n propositions $\alpha_1, \ldots, \alpha_n$
- $\bullet \varphi \equiv O_{\varphi}(\alpha_1, \ldots, \alpha_n)$ and $\psi \equiv O_{\psi}(\alpha_1, \ldots, \alpha_n)$.
- $\bullet \varphi$ and ψ are said to be each other's

external negation iff $O_{\varphi}(\alpha_1, \ldots, \alpha_n) \equiv \neg O_{\psi}(\alpha_1, \ldots, \alpha_n)$ $(ENEG)$ **internal negation** iff $O_{\varphi}(\alpha_1, \ldots, \alpha_n) \equiv O_{\psi}(\neg \alpha_1, \ldots, \neg \alpha_n)$ (ineg) dual iff $O_{\varphi}(\alpha_1, \ldots, \alpha_n) \equiv \neg O_{\psi}(\neg \alpha_1, \ldots, \neg \alpha_n)$ $(DUAL)$

KU LEUVEN

the same standard examples:

- the relations are functional (up to logical equivalence):
	- **e** e.g. if $\text{INEG}(\varphi, \psi_1)$ and $\text{INEG}(\varphi, \psi_2)$, then $\psi_1 \equiv \psi_2$
	- we write $\psi = \text{INEG}(\varphi)$ instead of $\text{INEG}(\varphi, \psi)$
- the relations are symmetrical: e.g. $DUAL(\varphi, \psi)$ iff $DUAL(\psi, \varphi)$
- the functions are **idempotent**: e.g. $ENEG(ENEG(\varphi)) = \varphi = ID(\varphi)$

- define the identity function $ID(\varphi) := \varphi$
- **•** the four duality functions ID, ENEG, INEG and DUAL form a **Klein 4-group** under composition (\circ) , with the following Cayley table:

- the Klein 4-group is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$:
	- each copy of \mathbb{Z}_2 governs its own negation
	- ID \sim $(0, 0)$, ENEG \sim $(1, 0)$, INEG \sim $(0, 1)$, and DUAL \sim $(1, 1)$

[Introduction to Logical Geometry](#page-0-0) – Part 2

Natural way of extending the square:

- adding more independent negation positions
- i.e. adding more copies of \mathbb{Z}_2
- logically: from $\mathbb{Z}_2 \times \mathbb{Z}_2$ to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ from 2 negation positions to 3 negation positions from $2^2 = 4$ duality functions to $2^3 = 8$ duality functions
- **e** geometrically: from square to cube/octagon to ...

Aristotelian/duality multigraph (ADM): visualizes how many times a specific combination of Aristotelian and duality relation occurs in the square

KU LEUVEN

each Aristotelian relation corresponds to a unique duality relation

- each Aristotelian relation corresponds to a unique duality relation
- vice versa, duality relations
	- **•** ENEG, DUAL and ID correspond to a unique Aristotelian relation
	- INEG corresponds to two Aristotelian relations

- each Aristotelian relation corresponds to a unique duality relation
- vice versa, duality relations:
	- **•** ENEG, DUAL and ID correspond to a unique Aristotelian relation
	- INEG corresponds to two Aristotelian relations
- ADM for the square of opposition has 4 **connected components**, viz. $\{CD, \text{ENEG}\}\$, $\{C, SC, \text{INEG}\}\$, $\{SA, \text{DUAL}\}$ and $\{EQ, \text{ID}\}\$

[Introduction to Logical Geometry](#page-0-0) – Part 2

KU LEU

- **•** this close correspondence leads to a quasi-identification of the two types of squares:
	- using Aristotelian terminology to describe duality square (or vice versa)
	- viewing one as a generalization of the other
	- already noted in medieval logic (Peter of Spain, William of Sherwood):
		- ▶ mnemonic rhyme: pre contradic, post contra, pre postque subalter
		- ▶ ENEG = pre \approx CD, INEG = post \approx C, DUAL = pre postque \approx SA
- **o** still some **crucial differences**:
	- duality relations are all symmetric \Leftrightarrow Aristotelian SA is asymmetric
	- duality relations are all functional \Leftrightarrow Aristotelian C, SC and SA are not Löbner (1990, 2011), Peters & Westerståhl (2006), Westerståhl (2012)
	- **o** duality relations are **not logic-sensitive** \Leftrightarrow Aristotelian relations are lecture 4

KU LEUV

(In)dependence of Aristotelian and duality diagrams 40

- the most powerful way to argue for the independence of Aristotelian and duality diagrams consists in analyzing diagrams **beyond** the square
- **•** the **hexagon** is not the most natural extension of the square:
	- natural extension from Aristotelian perspective (6 is a multiple of 2)
	- not natural extension from duality perspective (6 is not a power of 2)

 \Rightarrow JSB and SC hexagon are less informative than classical square

 \bullet octagon = natural extension from Aristotelian + duality perspective:

o discuss some octagons in detail:

- **three different Aristotelian families** of octagons
- two different types of generalized duality

KU LEU

Octagons for composed operator duality 41

- **•** suppose that φ is the result of applying an *n*-ary composed operator $O_1 \circ O_2$ to n propositions $\alpha_1, \ldots, \alpha_n$
- $\varphi \equiv (O_1 \circ O_2)(\alpha_1, \ldots, \alpha_n) = O_1(O_2(\alpha_1, \ldots, \alpha_n))$
- an extra negation position has become available!
- the proposition $O_1(O_2(\alpha_1, \ldots, \alpha_n))$ has a unique
	- external negation (ENEG): $\neg O_1(\begin{array}{cc} O_2(\begin{array}{cc} \alpha_1, \ldots, \alpha_n \end{array}))$
	- intermediate negation (MNEG): $O_1(\neg O_2(-\alpha_1, \ldots, \alpha_n))$
	- internal negation (INEG): $O_1($ $O_2(\neg \alpha_1, \ldots, \neg \alpha_n))$
- 3 independent negation positions $\Rightarrow 2^3 = 8$ duality functions in total
- much richer duality behavior:
	- eneg, mneg, and ineg
	- eneg mneg (em), eneg ineg (ei), and mneg ineg (mi)
	- eneg mneg ineg (emi)

Buridan octagon (modal syllogistics) 46

KU LEUVEN

Octagons for generalized Post duality

- classical duality applies internal negation to all arguments, i.e. the internal negation of $O(\alpha_1, \ldots, \alpha_n)$ is $O(\neg \alpha_1, \ldots, \neg \alpha_n)$
- **•** now: apply internal negation to each argument **independently**
- \bullet with a binary operator O, we thus have 3 independent negation positions in total: the proposition $O(\alpha_1, \alpha_2)$ has a unique:
	- external negation (ENEG): $\neg O(-\alpha_1, \alpha_2)$
	- first internal negation (INEG1): $O(\neg \alpha_1, \alpha_2)$,
	- **second internal negation** (INEG2): $O(-\alpha_1, \neg \alpha_2)$
- 3 independent negation positions $\Rightarrow 2^3 = 8$ duality functions in total
- much richer duality behavior:
	- eneg, ineg1, and ineg2
	- ENEG \circ INEG1 (EI1), ENEG \circ INEG2 (EI2), and INEG1 \circ INEG2 (112)
	- \bullet ENEG \circ INEG1 \circ INEG2 (EI12)

KU LEUV

KU LEUVEN

KU LEUVEN

KU LEUVEN

KU LEUVEN

KU LEUVEN

[Introduction to Logical Geometry](#page-0-0) – Part 2

Moretti octagon (propositional logic) 57

KU LEUVEN

Summary 58

square of opposition \rightsquigarrow classical duality

Buridan octagon ⇝ composed operator duality

Keynes-Johnson octagon \rightsquigarrow generalized Post duality

Moretti octagon \rightsquigarrow generalized Post duality

KU LEUVEN

- 1. Basic Concepts, Bitstring Semantics and (Iso)morphisms
- 2. Abstract-Logical Properties of Aristotelian Diagrams, Part I **A** Aristotelian, Opposition, Implication and Duality Relations
- 3. Visual-Geometric Properties of Aristotelian Diagrams **IFF** Informational Equivalence, Cognition, Symmetry and Distance
- 4. Abstract-Logical Properties of Aristotelian Diagrams, Part II **B** Boolean Structure and Logic-Sensitivity
- 5. Case Studies and Philosophical Outlook

Context 60

- four geometries (sets of relations):
	- Aristotelian geometry $(\mathcal{A}\mathcal{G})$
	- opposition geometry $(\mathcal{O}\mathcal{G})$
	- \bullet implication geometry (\mathcal{IG})
	- duality geometry
- Aristotelian/duality multigraph (ADM): interface between AG and DG
- can't we do something similar for...
	- the interface between OG and IG
	- \bullet the interface between OG and DG
	- \bullet the interface between IG and DG

Example: classical square of opposition 61

KU LEUVEN

New multigraphs for the classical square 62

-
-
- \circ *IG*/*DG* multigraph

 \circ *OG/IG* multigraph (for the sake of comparison: \circ OG/DG multigraph \circ ADM = AG/DG multigraph)

KU LEUVEN

[Introduction to Logical Geometry](#page-0-0) – Part 2

- we have seen:
	- a AG/DG multigraph for the classical square (classical duality)
	- a AG/DG multigraph for the Buridan octagon (composed operator duality)
	- \bullet AG/DG multigraphs for the Moretti and Keynes-Johnson octagons (generalized Post duality)
	- a $OG/IG/DG$ multigraph for the classical square (classical duality)
- what about:
	- a $OG/IG/DG$ multigraph for the Buridan octagon (composed operator duality)
	- \circ OG/IG/DG multigraphs for the Moretti and Keynes-Johnson octagons (generalized Post duality)

Thank you! Questions?

More info: <www.logicalgeometry.org>

[Introduction to Logical Geometry](#page-0-0) – Part 2