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The square of opposition 4

@ recall the Aristotelian geometry AGs = {CDs, Cs, SCs, SAs}
(relative to an appropriate logical system S)

@ ¢ and ) are said to be
S-contradictory (CDs) iff Es—(pAY) and s —(—p A )
S-contrary (Cs) iff s —(pAY) and s (- A )

S-subcontrary (SCs) iff s —(pAY) and s —(—p A )
in S-subalternation (SAs) iff FEs¢ — 1 and s —p

e Aristotelian square of opposition: 4 propositions + the Aristotelian
relations holding between them

KU LEUVEN
Introduction to Logical Geometry — Part 2



Generalizations of the Aristotelian square 5

@ throughout history: several proposals to extend the square of opposition

@ more propositions, more relations
o larger and more complex diagrams
o hexagons, octagons, cubes and other three-dimensional figures

o cf. the motivating examples from lecture 1
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The success of the Aristotelian square 6

@ the square and its extensions: various types of hexagons, octagons, etc.
@ the extensions are very interesting

o well-motivated (propositional logic, modal logic S5)
e throughout history (William of Sherwood, John Buridan, John N. Keynes)
o interrelations (e.g. JSB hexagon is Boolean closure of classical square)

@ yet there is a stunning discrepancy:

o (nearly) all logicians know about the Aristotelian square of opposition
o (nearly) no logicians know about the other Aristotelian diagrams

@ our explanation: “the Aristotelian square is very informative”

e this claim sounds intuitive, but is also vague
o we will provide a precise and well-motivated framework

KU LEUVEN

Introductio ogical Geometry — Part 2



Problems with the Aristotelian geometry 7

o recall the Aristotelian geometry AGs: ¢ and 1) are said to be

S-contradictory (CDs) iff Es-(pAy) and Es —(—p A )
S-contrary (Cs) iff Es—(pAY) and s o(—p A )
S-subcontrary (SCs) iff s —(pAY) and s —(—p A )
in S-subalternation (SAs) iff s ¢ — v and s —p

@ problems with the relations of AGs:
e not mutually exclusive: e.g. | and p are contrary and subaltern in CPL

(lemma: if ¢, 1) are contingent, they stand in at most one Arist. relation)

e not exhaustive: e.g. p and Op A O—p are in no Arist. relation at all in S5
(lemma: if ¢ is contingent, then ¢ stands in no Arist. relation to itself)

o conceptual confusion: can be true/false together vs. truth propagation
> ‘together' ~~ symmetrical relations (undirected)
> ‘propagation’ ~» asymmetrical relations (directed)
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The opposition geometry 8

@ replace subalternation with ‘non-contradiction’

@ two formulas ¢ and v are said to be

S-contradictory (CDs) iff s (@A) and s o (—p A1)
S-contrary (Cs) iff Es—(eAvY) and s —(—p A )
S-subcontrary (SCs) iff s —(pAyY) and s —(—p A )
S-non-contradictory (NCDs) iff s = (o A1) and s =(—p A 1))

e the opposition geometry for S: OGs := {CDs, Cs, SCs, NCDs }
e Carnapian state descriptions (‘rows 1 and 4 of a truth table’):

o Xi(p, ) =AY (note: ‘symmetry’ between
o Xu(p,v) = A conjuncts of X7 and X,)

@ OGs is defined of terms =X and —X4
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The implication geometry 9

@ subalternation: truth propagation ‘from left to right' ~ left-implication

@ vary the ‘direction’ of truth propagation

@ two formulas ¢ and v are said to be in
S-bi-implication (Bls) iff Esp—=1% and Esv¢— ¢
S-left-implication (LIs) iff Esp—1% and s — ¢
S-right-implication (Rls) iff Fse—1 and sy — o
S-non-implication (Nls)  iff FEsp—14 and s — ¢

o the implication geometry for S: ZGs := {BlIs, Lls, Rls, Nis }

e Carnapian state descriptions (‘rows 2 and 3 of a truth table’):

o Yo(p, ) == Ay (note: ‘asymmetry’ between
o X3(p,¢) == At conjuncts of 35 and 33)

@ 7(Gs is defined of terms =35 and —X3
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Motivating the new geometries, | 10

two new geometries: opposition geometry and implication geometry

together, they solve the problems of the Aristotelian geometry

the relations of OGs are mutually exclusive and jointly exhaustive:
each pair of formulas stands in exactly one opposition relation

the relations of ZGs are mutually exclusive and jointly exhaustive:
each pair of formulas stands in exactly one implication relation

no longer conceptual confusion:

e OGs is uniformly defined in terms of being able to be true/false together
(cf. the symmetrical state descriptions %1 and 34)

o ZGs is uniformly defined in terms of truth propagation
(cf. the asymmetrical state descriptions X5 and X3)
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Motivating the new geometries, Il 11

o clear link with Correia (2012):
two distinct philosophical traditions in interpreting the square:

@ square as a theory of negation commentaries on De Interpretatione
e square as a theory of consequence commentaries on Prior Analytics

@ terminological remark:
e ‘square of opposition’, ‘hexagon of opposition’, ‘cube of opposition’
misnomer: exclusive focus on OGs, while ignoring ZGs

more appropriate terminology: ‘Aristotelian square’ etc.
concrete examples from the literature:
> ‘square of opposition and equipollence’ (John Mikhail, 2007)
» ‘square of implication and opposition’ (W. E. Johnson, 1922)
> ‘octagon of implication and opposition’ (W. E. Johnson, 1922)
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Motivating the new geometries, Il 12

@ opposition and implication geometry are conceptually independent
yet there's a clear relationship between them (symmetry breaking):

CDs(p,v) =  Bls(p, )

Cs(p,v) & Ls(e, )
SCs(p, ) & Ris(p, )
NCDs(p,) < Nis(p, =)

@ both geometries are also internally structured:

CDS(@?@Z}) g CDs(_'gO,_ﬂ/)) BIS(Qpad)) g BIS(_va_' )
CS(%w) g SCS(_'S07 _'1/]) LIS(§07’¢) g RIS(_‘@a_‘w)
SCS(@aw) g Cs(ﬁ%ﬂ/)) RIS(@aw) g LIS(_'Lpa_'qu))
NCDs(p,v) <« NCDs(—p,~)  Nis(p,v) < Nis(—p, 1)
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Motivating the new geometries, IV 13

@ given o, 1), we define a binary, truth-functional connective
olP¥) = (01,092,03,04) € {0, 1}4:
e (, 1 stand in exactly one opposition relation
. 0 if Es X

for i = 1,4, define o; := I =s Xy, )
1 if fs =Ei(p,9)

e 1 stand in exactly one implication relation
0 if s —~%i(p,v)

for i = 2,3, define o; := ,
{1 if Fs 2%i(e, )

@ theorem: for all ©,, it holds that = ¢ o(#¥) 4)
o eg.: if SCs(p,1) and Nis(p,1)), then ol#%) = (1,1,1,0), so |=s ¢ V9
o eg.: if Gs(p,1) and Rls(ip,v), then ol#¥) = (0,1,0,1), so =5

@ theorem: if ¢ and 1 are contingent, they can stand in only 7 of the
possible 16 (= 4 x 4) combinations of an opp. and an imp. relation
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Information as range 14

@ general idea: the informativity of a statement o is inversely correlated
with the size of its information range I(o)

e informativity ordering <;: o <; 7 iff I(0) D I(7)

@ we are interested in statements of the form Rs(p, ),
with Rs € OGs UZGs

o [(Rs(p,v)) :={M € Cs | M is compatible with Rs(p, )}

@ a model M of the logic S is said to be compatible with Rs(¢p, 1)) iff
forall 1 <i < 4: (Rs(p, 1) = ks ~Ti(,v) ) = M (0, v)

e lift informativity ordering from statements Rs((p, 1)) to relations Rs:
RS SY SS iff VQD, d) : RS(QO, 1/)) < SS(%@M
KU LEUVEN
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Information in the opposition and implication geometries 15

e for 1 <i < 4, models of type i are those that make X;(¢, 1) true

@ informativity of the opposition and implication relations:

| models of type || | models of type

CDS(%W B/S(@v¢) L, 4
CS(@JJ’) 2 3 4 L/S(SD71/)) I, 3'4
5Cs(p,v) 123 Ris(¢,v) 12, 4
NCDs(ip, %) 1234 Nis(ip, ) 1234
high A (@ contradiction (b) bi-impl
2
=
S| contra- subcontra- left- right-
S riety riety impl. impl.
£
R=
low
non-impl.

non-contradiction
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Technical and philosophical motivations 16

@ close match between formal account and intuitions:

e e.g. CDs is more informative than Cs
e if ¢ is known,
» announcing CDs(¢, ) uniquely determines 1
» announcing Cs(, ) does not uniquely determine 1)

@ combinatorial results on finite Boolean algebras (~ bitstrings!)
o Boolean algebra B with 2" formulas, formula of level i:

» 1 contradictory
» 277" — 1 contraries and 2 — 1 subcontraries
> (2"7* —1)(2' — 1) non-contradictories

o l<2n 12 1< (2" -2 - 1) iffl<i<n-—1

@ coherence with earlier results:

e OGs and ZGs yield isomorphic informativity lattices
° CDs(gOJﬁ) = Bls((p,ﬁd)) etc.
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The special status of the Aristotelian square 17

@ why is the Aristotelian square special?

@ our answer: because it is very informative

e it is a very informative diagram (viz. no unconnectedness)
e in a very informative geometry (viz. the Aristotelian geometry)

KU LEUVEN
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Informativity of the Aristotelian geometry, | 18

@ Aristotelian geometry: hybrid between

e opposition geometry: contradiction, contrariety, subcontrariety
e implication geometry: left-implication (subalternation)

@ these relations are highly informative (in their geometries)

contradiction

contra- subcontra- left-
riety riety mpl.

right-
impl.

non-contradiction non-impl.
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Informativity of the Aristotelian geometry, Il 19

@ given any two formulas:

o they stand in exactly one opposition relation R
e they stand in exactly one implication relation S

@ theorem:

e if R is strictly more informative than .S, then R is Aristotelian
e if S is strictly more informative than R, then S is Aristotelian

@ three examples (in S5):

e [p and Op: non-contradiction and left-implication
e [p and OJ—p: contrariety and non-implication
e Op and O—p: contradiction and non-implication

Op/— op P —0op p——op

KU LEUVEN
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Unconnectedness 20

@ given any two formulas: one opposition relation, one implication relation

@ what if neither relation is strictly more informative than the other?

@ theorem: this can only occur in one case: NCD + NI (unconnectedness)

contradiction bi-impl.

contra- subcontra- left- right-
riety riety impl. impl.

l non-contradiction non-impl. ]

o Aristotelian gap = information gap

e no Aristotelian relation at all (recall that AGs is not exhaustive)
e combination of the two least informative relations

KU LEUVEN
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Unconnectedness 21

@ recall the four-condition characterization of unconnectedness:

e ¢ and ¢ can be true together cf. X1 (¢, 1)
e ¢ can be true while v is false cf. Zo(p, 1)
e ¢ can be false while v is true cf. Z3(p, )
e o and v can be false together cf. Xy, )

@ unconnectedness as the combination of
non-contradiction (31, 34) and non-implication (X3, X3)

@ encoding unconnectedness requires bitstrings of length at least 4

o if Bs(F) = {0,1}" for n < 4,
then F does not contain any pair of S-unconnected formulas

e if F contains at least one pair of S-unconnected formulas,
then Bs(F) = {0,1}" for n >4

KU LEUVEN
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Unconnectedness in some Aristotelian diagrams, | 22

@ no unconnectedness in the classical Aristotelian square
-p

X X X

@ no unconnectedness in the Jacoby-Sesmat-Blanché hexagon

0
OpvO-p OpvO-p /Dva-p\
OD e __D-g;o [m], o _‘}—p D-po

| III |

op op <p o-p "P
SN N\ 20

OpAC-p OpACp <>pA<>-p
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Unconnectedness in some Aristotelian diagrams, Il 23

@ unconnectedness in the Béziau octagon

@ e.g. p and Op A O—p are unconnected

KU LEUVEN
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Summary: opposition, implication and information 24

the Aristotelian geometry is hybrid between opposition and implication

in order to maximize informativity

= applies to all Aristotelian diagrams

on the level of individual diagrams: avoid unconnectedness
in order to minimize uninformativity

= some Aristotelian diagrams succeed better than others

o classical square, JSB hexagon, SC hexagon don’t have unconnectedness
e Béziau octagon (and many other diagrams) do have unconnectedness

Q: what about, say, the JSB hexagon and SC hexagon?
(equally informative as the square, yet less widely known)

A: this requires yet another geometry: duality

KU LEUVEN
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Aristotelian versus duality relations: introduction 26

@ square of opposition:

o visually represents the Aristotelian relations of contradiction,
contrariety, subcontrariety and subalternation

e nearly always also exhibits another type of logical relations, viz. the
duality relations of internal negation, external negation and duality

@ based on the concrete examples found in literature, the notions of
Aristotelian square and duality square seem almost co-extensional

@ but: clear conceptual differences between the two!

@ the logical and visual properties of Aristotelian and duality diagrams in
isolation are relatively well-understood

KU LEUVEN
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Aristotelian versus duality relations: introduction 27

Aims and claims of this part of the lecture:

@ get clearer picture of interconnections between
the two types of relations

@ introduce a new type of diagram to visualise these interconnections:
the Aristotelian/Duality Multigraph (ADM)

@ octagons are natural extensions/generalizations of the classical square

e from an Aristotelian perspective and
o from a duality perspective

@ the correspondence between Aristotelian and duality relations:

o is lost on the level of individual relations and diagrams
e is maintained on a more abstract level

KU LEUVEN
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Aristotelian relations and squares 28

some standard examples:

noAareB
all A are B all A are not B

—op ~("pATg) ~(prg)

notall Aarcnot B notallAareB 0P
—pvq

some Aare B some A are not B Op Op pvq

subcontrariety

subalternation ———p»

contradiction

contrariety =~ =--=---eeem-e-a---
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Aristotelian relations and squares 29

o the contradiction relation:
e most important and informative Aristotelian relation: each proposition ¢
has a unique contradictory (up to logical equivalence), viz. =
e almost all Aristotelian diagrams in the literature are closed under
contradiction: if the diagram contains ¢, then it also contains —
= visualized by means of central symmetry IS lecture 3

o the propositions in an Aristotelian diagram can naturally be grouped into
pairs of contradictory propositions (PCDs)

o Aristotelian diagrams:
e remember the shift of perspective:
» a square does not really consist of 4 individual propositions
> rather, a square consists of 2 PCDs
e natural way of extending the square: adding more PCDs:

> logically: from 2 PCDs to 3 PCDs to 4 PCDs to . ..
» geometrically: from square to hexagon to octagon to ...

KU LEUVEN
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Duality relations and squares 30

@ suppose that two formulas ¢ and v are the results of applying n-ary
operators O, and O, to the same n propositions oy, ..., ap,

o o =0,(1,...,an) and ¥ = Oy (o, ..., o).

@ ¢ and 1) are said to be each other’s

external negation iff Og(ai,...,an) = 20u( a1,..., ap)
(ENEG)

internal negation iff Og(a1,...,an) =  Oy(—aq,...,1ap)
(INEG)

dual iff O¢(a1, . ,Ozn) = —|Ow(ﬂa1, ey —|O¢n)
(DUAL)

KU LEUVEN
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Duality relations and squares 31

the same standard examples:

no A are B

all A are B all A are not B up up PArY pPATY

INEG INEG INEG
o] o o g o o
S NS S = NG 5 5 o, =

& %z & e, > A

2 ,»5\5 & 2 a z{}l & a a Q}l % a

INEG INEG INEG
not all A are not B notall A are B ToTp —op ~(CpATq) ~(prg)
some Aare B some A are not B op p pvg —pvg

@ the relations are functional (up to logical equivalence):
e e.g. if INEG(p, 1) and INEG(p,12), then 11 = 1)y
e we write ¢ = INEG(¢) instead of INEG(¢p, 1)

@ the relations are symmetrical: e.g. DUAL(yp, ¥) iff DUAL(%, ¢)
e the functions are idempotent: e.g. ENEG(ENEG(p)) = ¢ = ID(yp)

KU LEUVEN
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Duality relations and squares 32

o define the identity function 1D(p) := ¢

o the four duality functions ID, ENEG, INEG and DUAL form a Klein
4-group under composition (o), with the following Cayley table:

o | o ENEG INEG DUAL
D D ENEG INEG DUAL
ENEG ENEG D DUAL INEG
INEG INEG DUAL D ENEG
DUAL DUAL INEG ENEG D

o the Klein 4-group is isomorphic to Zsy X Zs:
e each copy of Zy governs its own negation
e ID ~ (0,0), ENEG ~ (1,0), INEG ~ (0,1), and DUAL ~ (1,1)

)

)—w—tbo

,0) (0
;0) (0,
) (@,
) (0
1)
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Duality relations from squares to cubes 33

Natural way of extending the square:
@ adding more independent negation positions
@ i.e. adding more copies of Zs

o logically: from Zo X Zo to Zo X Zo X Zs
from 2 negation positions to 3 negation positions
from 22 = 4 duality functions to 23 = 8 duality functions

e geometrically: from square to cube/octagon to ...

Va-OP(x) = VarO-P()
E
S |n S
§ E §' E
G N
VACP(x) 7 0P |E
G
E
N -
INEG
E | -vxOP(x) Vx-P(x)
G E
o N S
& B
G
~ValIP(x) INEG ZNAT-P(x)
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Aristotelian /Duality Multigraphs (ADMs) 34

Aristotelian /duality multigraph (ADM): visualizes how many times a
specific combination of Aristotelian and duality relation occurs in the square

no A are B
all A are B all A are not B

vna

not all A are not B not all A are B —op —op ~(CpAg) ~(prg)
some Aare B some A are not B Op Op pvq pvTq
contradiction ——— SUDCORLrariety e
contrariety = --------------e- subalternation ——
CD c sC SA EQ
ENEG INEG DUAL ID

KU LEUVEN
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Aristotelian /Duality Multigraph (ADM) 35

CD C sC 54 EQ

ENEG INEG DUAL D
The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular
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Aristotelian /Duality Multigraph (ADM) 36

CD C sC 54 EQ

ENEG INEG DUAL ID

The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular

@ each Aristotelian relation corresponds to a unique duality relation

KU LEUVEN
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Aristotelian /Duality Multigraph (ADM) 37

CD C sC 54 EQ

ENEG INEG DUAL D
The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular

@ each Aristotelian relation corresponds to a unique duality relation
@ vice versa, duality relations

e ENEG, DUAL and ID correspond to a unique Aristotelian relation
e INEG corresponds to two Aristotelian relations

KU LEUVEN
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Aristotelian /Duality Multigraph (ADM) 38

C SC
INEG

The correspondence between Aristotelian and duality relations is not perfect,
but still highly regular

CD

ENEG

DUAL ID

@ each Aristotelian relation corresponds to a unique duality relation
@ vice versa, duality relations:

e ENEG, DUAL and ID correspond to a unique Aristotelian relation
e INEG corresponds to two Aristotelian relations

@ ADM for the square of opposition has 4 connected components,
viz. {CD,ENEG}, {C, SC,INEG}, {SA,DUAL} and {EQ,ID}

KU LEUVEN
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(In)dependence of Aristotelian and duality diagrams 39

@ this close correspondence leads to a quasi-identification
of the two types of squares:
o using Aristotelian terminology to describe duality square (or vice versa)
e viewing one as a generalization of the other

e already noted in medieval logic (Peter of Spain, William of Sherwood):

» mnemonic rhyme: pre contradic, post contra, pre postque subalter
> ENEG = pre =~ CD, INEG = post ~ C, DUAL = pre postque ~ SA
@ still some crucial differences:

o duality relations are all symmetric < Aristotelian SA is asymmetric
e duality relations are all functional < Aristotelian C, SC and SA are not

IS | 6bner (1990, 2011), Peters & Westerst&hl (2006), Westerstahl (2012)

e duality relations are not logic-sensitive < Aristotelian relations are

IF" |ecture 4
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(In)dependence of Aristotelian and duality diagrams 40

@ the most powerful way to argue for the independence of Aristotelian and
duality diagrams consists in analyzing diagrams beyond the square

@ the hexagon is not the most natural extension of the square:

e natural extension from Aristotelian perspective (6 is a multiple of 2)
e not natural extension from duality perspective (6 is not a power of 2)

= JSB and SC hexagon are less informative than classical square

@ octagon = natural extension from Aristotelian + duality perspective:

from square to octagon
2x2=4=22 4x2=8=23
2 PCDs & 2 x 2 4 PCDs «w 4 x 2 = Aristotelian view
2 negations «~s 22 3 negations «~ 23 = duality view

@ discuss some octagons in detail:

o three different Aristotelian families of octagons
o two different types of generalized duality

KU LEUVEN
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Octagons for composed operator duality 41

@ suppose that ¢ is the result of applying an n-ary composed operator
01 0 Oy to n propositions aq, ..., ay,

Y = (01 o 02)(041, ceey Oén) = 01(02(041, Ce ,Ozn))
@ an extra negation position has become available!

@ the proposition O1(Oz(a,...,ay,)) has a unique
e external negation (ENEG): —01( O2( a1,..., ap))
e intermediate negation (MNEG): O1(=02( a1,..., ag))
e internal negation (INEG): O1( Oz(—a,...,"ay))
@ 3 independent negation positions = 23 = 8 duality functions in total

much richer duality behavior:
e ENEG, MNEG, and INEG
e ENEC o MNEG (EM), ENEG o INEG (EI), and MNEG o INEG (MI)
e ENEG o MNEG o INEG (EMI)
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Buridan octagon (modal syllogistics) 42

ot
Vx—o—Px - e0 'MN"G
VxOPx Y
-Vx—oPx
HxDPx % | %E.'G

&
T4

=Vxo—Px INEG  —¥xoPx
AxOPx Ix0—Px
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Buridan octagon (modal syllogistics) 43

cD C sC Un S4 EQ
ENEG MNEG EMI INEG EI MI EM D
cD 54 EQ

NG

ENEG INEG DUAL ID
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Buridan octagon (modal syllogistics) a4

cD C SC Un SA EQ
ENEG MNEG EMI INEG EI MI EM D
cD 54 EQ

NG

ENEG INEG DUAL ID
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Buridan octagon (modal syllogistics) 45

cD EQ
ENEG MNEG EMI INEG ID
cD c sC 54 EQ
ENEG INEG DUAL D
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Buridan octagon (modal syllogistics) 46

cD

[Sesz ///\\

ENEG MNEG  EMI INEG

CcD C SC 5S4 EQ

ST

ENEG INEG DUAL ID
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Octagons for generalized Post duality a7

@ classical duality applies internal negation to all arguments, i.e. the
internal negation of O(av, ..., ) is O(—aq, ..., —ay,)

@ now: apply internal negation to each argument independently

@ with a binary operator O, we thus have 3 independent negation
positions in total: the proposition O(«1, as) has a unique:

e external negation (ENEG): -0( a1, a9)
e first internal negation (INEG1): O(—ai1, az),
e second internal negation (INEG2): O( a1,na3)

@ 3 independent negation positions = 23 = 8 duality functions in total

@ much richer duality behavior:

e ENEG, INEG1, and INEG2
e ENEG o INEG1 (EIl), ENEG o INEG2 (E12), and INEG1 o INEG2 (112)
e ENEG o INEG1 o INEG2 (EI12)
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Keynes-Johnson octagon (syllogistics with subject negation) 48

V(A,B) mec2 V(A,—B)

KU LEUVEN
Introduction to Logical Geometry — Part 2



Keynes-Johnson octagon (syllogistics with subject negation) 49

[
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Keynes-Johnson octagon (syllogistics with subject negation) 50

[
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Keynes-Johnson octagon (syllogistics with subject negation) 51

[
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Keynes-Johnson octagon (syllogistics with subject negation) 52

alPaNYaN|

ENEG INEG1 INEG2 EIl 112 Ell12
CD c sC 54 EO
ENEG INEG DUAL 1D
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Moretti octagon (propositional logic) 53

PN INEG2 pAq
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Moretti octagon (propositional logic) 54

cD c sC EQ
ENEG INEG1 112 INEG2 Ell EIl12 ID
cD c sC 54 EQ
ENEG INEG DUAL D
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Moretti octagon (propositional logic) 55

cD C sC EQ
ENEG INEG1 112 INEG2 Ell EIl12 ID
cD c sC 54 EQ
ENEG INEG DUAL D
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Moretti octagon (propositional logic) 56

cD c sC EQ
ENEG INEG1 112 INEG2 Ell EIl12 ID
cD c sC 54 EQ
ENEG INEG DUAL D
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Moretti octagon (propositional logic) 57

cD o SC EQ

ENEG INEG1 112 INEG2 Ell Ell2 ID
CD C SC SA EO
ENEG INEG DUAL ID
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Summary 58

(o ) c sc 54 EQ )
square of opposition
~ classical duality \/ |
ENEG INEG DUAL ID
Buridan octagon w (¢
~+ composed W ///\\
operator duality ENEG \MNEG EMI  INEG

Keynes-Johnson o (¢ sc s4

octagon ||>< //\\ //\\\

~ generalized

POSt duallty ENEG INEG1 INEG2 EIl EI2 112 EIl12
Moretti octagon b < > . i
~ generalized M // \\\ | |

Post duality ENEG INEGI 112 INEG2 EIl EI12 ER2 D
7
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Structure of the course 59

1. Basic Concepts, Bitstring Semantics and (Iso)morphisms

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS” Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
IS Informational Equivalence, Cognition, Symmetry and Distance

I

. Abstract-Logical Properties of Aristotelian Diagrams, Part Il
5" Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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Context 60

e four geometries (sets of relations):

o Aristotelian geometry (AG)
e opposition geometry (0G)
e implication geometry (Z9)
o duality geometry (DG)

o Aristotelian/duality multigraph (ADM): interface between AG and DG

@ can't we do something similar for. ..

o the interface between OG and ZG
o the interface between OG and DG
o the interface between ZG and DG
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Example: classical square of opposition 61
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New multigraphs for the classical square 62

e OG/ZG multigraph (for the sake of comparison:
e OG/DG multigraph ADM = AG/DG multigraph)
e 7G/DG multigraph

CD BI CD————— ENEG Bl———— 1D
C 1 C——— INEG LI———— DUAL
sC RI sC DUAL  RI ENEG
NCD N NCD 4 ID Nlé INEG
0g 1G 0g DG 1G DG
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Combined OG/7ZG /DG multigraph for the classical square 63

Dg

ENEG INEG DUAL ID
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Open questions and ongoing research 64

@ we have seen:

e a AG/DG multigraph for the classical square (classical duality)

e a AG/DG multigraph for the Buridan octagon
(composed operator duality)

o AG/DG multigraphs for the Moretti and Keynes-Johnson octagons
(generalized Post duality)

o a OG/ZG /DG multigraph for the classical square (classical duality)

@ what about:
e a OG/ZG /DG multigraph for the Buridan octagon
(composed operator duality)

o OG/IG /DG multigraphs for the Moretti and Keynes-Johnson octagons
(generalized Post duality)
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The End 65

Thank you! Questions?

More info: www.logicalgeometry.org
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