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Structure of the course 2

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS” Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
B2 Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part Il
5" Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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Broader context 3

{ logical geometry J

historical and contemporary applications
of Aristotelian diagrams

KU LEUVEN
Introduction to Logical Geometry — Part 5



Russell on Aristotle and his logic 4

“ever since the beginning of the seventeenth century, almost every
serious intellectual advance has had to begin with an attack
on some Aristotelian doctrine; in logic, this is still true at the present day”
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Russell’s theory of definite descriptions 5

o definite descriptions in natural language:

o the president of the United States
e the man standing over there
e the so-and-so

@ they can occur in

o subject position e.g. The president was in Hamburg last week.
e predicate position e.g. Donald Trump is currently still the president.

o Russell's quantificational analysis of ‘the A is B’

Iz (Ax AVY(Ay =y =2x) A Bx)

o Neale's restricted quantifier notation
[the z: Ax]|Bx
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Russell’s theory of definite descriptions 6

@ [the z: Ax]Bx =poL (EX) A (UN) A (UV)

(EX) JzAx there exists at least one A
(UN) VaVy((Az A Ay) — = =1y) there exists at most one A
(vv) Vz(Azx — Brx) all As are B

@ much of the subsequent literature on Russell's quantificational theory of
definite descriptions has focused on one of these three conditions
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Russell’s theory of definite descriptions 7

@ [the z: Ax]Bx =poL (EX) A (UN) A (UV)

(EX) JzAx there exists at least one A
(UN) VaVy((Az A Ay) — = =1y) there exists at most one A
(vv) Vz(Azx — Brx) all As are B

@ much of the subsequent literature on Russell's quantificational theory of
definite descriptions has focused on one of these three conditions

@ what is the linguistic status of (EX)?

o Russell: (EX) is part of the truth conditions of ‘the A is B’
= if (EX) is false, then ‘the A is B’ is false

e Strawson: (EX) is a presupposition of 'the A is B’
= if (EX) is false, then ‘the A is B’ does not have a truth value at all
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Russell’s theory of definite descriptions 8

@ [the z: Ax]Bx =poL (EX) A (UN) A (UV)

(EX) JzAx there exists at least one A
(UN) VaVy((Az A Ay) — = =1y) there exists at most one A
(vv) Vz(Azx — Brx) all As are B

@ much of the subsequent literature on Russell's quantificational theory of
definite descriptions has focused on one of these three conditions

e the problem of incomplete definite descriptions (for which (UN) fails)
e.g. the book is on the shelf = there is at most one book in the universe

e refinements and alternatives:
o ellipsis theories (Vendler)
e quantifier domain restriction theories (Stanley and Szabd)
o pragmatic theories (Heim, Szabo)

KU LEUVEN

Introduction to Logical Geometry — Part 5



Russell’s theory of definite descriptions 9

@ [the z: Ax]Bx =poL (EX) A (UN) A (UV)

(EX) JzAx there exists at least one A
(UN) VaVy((Az A Ay) — = =1y) there exists at most one A
(uv) Vz(Ax — Brx) all As are B

@ much of the subsequent literature on Russell's quantificational theory of
definite descriptions has focused on one of these three conditions

@ what about non-singular definite descriptions?

o plurals e.g. The wives of King Henry VIII were pale.
@ mass nouns e.g. The water in the Dead Sea is very salty.

@ such descriptions also satisfy a version of (UV) (Sharvy, Brogaard)
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An Aristotelian square for definite descriptions 10

@ Russell: what is the negation of ‘the A is B'?

o law of excluded middle = ‘the A is B' is true or ‘the A is not B’ is true
e but if there are no As, then both statements seem to be false

@ Russell: ‘the A is not B’ is ambiguous (scope)

° ﬁﬂx(Ax AVy(Ay =y =) A Bx) —[the z: Ax]Bx

o Jdx (AJ: AVy(Ay =y =2x) A —\Bx) [the 2: Az]-Bux
o first interpretation:

e Boolean negation of ‘the A is B’

o if there are no As, then [the x: Az]Bux is false, —[the x: Az]Bx is true
@ second interpretation:

o if there are no As, then [the x: Az|Bx and [the x: Ax]—Bux are false
e not the Boolean negation of ‘the A is B’
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An Aristotelian square for definite descriptions 11

@ crucial insight: the two interpretations of ‘the A is not B’ distinguished
by Russell stand in different Aristotelian relations to ‘the A is B’

o [the x: Az|Bx and —[the x: Az]Bx are FOL-contradictory
o [the x: Az|Bx and [the x: Ax]-Bx are FOL-contrary

e cf. Haack (1978), Speranza and Horn (2010, 2012), Martin (2016)

@ natural move: consider a fourth formula (with two negations)

Jz(Az AVy(Ay — y = z) A Bz) [the x: Ax|Bx

-3z (Az AVy(Ay — y = z) A Bz) —[the z: Az|Bx
Jz(Az AVy(Ay — y = z) A —~Bx) [the z: Ax|-Bzx
-3z (Az AVy(Ay — y = ) A ~Bx) —[the z: Az]|-Bx

@ in FOL, these four formulas constitute a classical square
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An Aristotelian square for definite descriptions 12

[the x: Ax]Bx [the x: Ax]—Bx

—[the x: Ax]—Bx —[the x: Ax]Bx

@ this is an Aristotelian square

@ but also a duality square BS” |ecture 2
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An Aristotelian square for definite descriptions 13

o this square is fully defined in ‘ordinary’ FOL = acceptable for Russell
@ summarizes Russell's solution to puzzle on law of excluded middle

@ interesting new formula: —[the z: Az|-Bz

o expresses a weak version of ‘the A is B’
—[the x: Az]-Bx =roL [(EX) A (UN)] — [the z: Az|Bx

> if there is exactly one A,
[the x: Az]Bx and —[the z: Az]|-Bx always have the same truth value

> in all other cases,
[the x: Ax]Bx is always false, whereas —[the z: Az]|-Bx is always true

o self-predication principles: what is the logical status of ‘the A is A'?
> [the z: Az]Ax is not a FOL-tautology
> —[the z: Az]- Az is a FOL-tautology
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Boolean closure of the definite description square 14

@ the Aristotelian square for definite descriptions is not Boolean closed
@ its Boolean closure is a JSB hexagon

@ importance of the (EX)- and (UN)-conditions

[the x: Ax]Bx v
[the x: Ax]—Rx (EX) A (UN)

lthe x: Ax]-Bx  [thex: Ax]Bx "/ | " [the x: Ax]-Bx

(the x: Ax] Bx — [the x: Ax]Bx — [the x: Ax]—Bx

—[the x: Ax]Bx A ~[(Ex) A (UN)]
—[the x: Ax]—Bx

KU LEUVEN
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Bitstring analysis 15

@ consider the formulas in the definite descripton square/hexagon

: o FOL .
o these formulas induce the partition II7 5

e « := [the x: Ax]|Bx
o g := [the z: Az]-Bz
e a3 := —[(EX) A (UN)]

@ example bitstring representations:

o [the z: Az|Bx =poL a1 ~ gets represented as 100
o —fthe z: Ax]-Bx =poL a1 V a3 ~ gets represented as 101

@ logical perspective: the Boolean closure of the square/hexagon has
23 — 2 = 6 contingent formulas

@ conceptual/linguistic perspective:
recursive partitioning of logical space
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Bitstring analysis 16

[the x: Ax]Bx [the x: Ax]—Bx
100 010
101 fETTTTTTTTTTIITIY PPRPrRTPPPPPREerh: 011
—[the x: Ax]—Bx —[the x: Ax]Bx
~(Ex) A (UN)]
001

KU LEUVEN
Introduction to Logical Geometry — Part 5



Linguistic relevance of the bitstring analysis 17

@ view HFT%'b as the result of a process of recursively
partitioning and restricting logical space (Seuren, Jaspers, Roelandt)

o divide the logical universe: (EX) A (UN) vs. —[(EX) A (UN)]
e focus on the logical subuniverse defined by (EX) A (UN)
o recursively divide this subuniverse: [the x: Az]|Bx vs. [the z: Az]|-Bx

T
111
-/\-

(EX) A (UN) —[(Ex) A (UN)]
110 001

(EX) A (UN) A (UV)  (EX) A (UN) A —(UV)
[the x: Ax]Bx [the x: Ax]—Bx
100 010
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Linguistic relevance of the bitstring analysis 18

@ another look at the ambiguity pointed out by Russell

o ‘the A is B" unambiguously corresponds to [the z: Axz]Bxz = 100
o relative to the entire universe, its negation is —[the z: Az]Bz = 011
o relative to the subuniverse (110), its negation is [the x: Az]-Bz = 010

= Russell’s two interpretations of ‘the A is not B’ correspond to
negations of ‘the A is B’ relative to two different universes
(semantic instead of syntactic characterization)

@ Seuren and Jaspers's (2014) defeasible Principle of Complement
Selection: “Natural complement selection is primarily relative to the
proximate subuniverse, but there are overriding factors.”

e overriding factors: intonation, additional linguistic material (Horn 1989)

o the largest prime is not even; in fact, there doesn't exist a largest prime
e the prime divisor of 30 is not even; in fact, 30 has multiple prime divisors
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The categorical statements 19

@ recall the four categorical statements from syllogistics:

A all As are B Va(Az — Bzx)

I some As are B x(Az A Bx)

E no As are B Vz(Ax — —Bx)
o some As are not B Jx(Ax A —~Bx)

@ already implicit in the definite description formulas

o [the x: Ax] Bz =roL (EX)A (UN)A (UV)
° ﬁ[the xT: ALL’] =FoL ﬁ(EX) vV ﬁ(UN) vV ﬁ(UV)
o [the x: Ax]—\Ba* =roL (EX) A (UN) A (UV*)
o —[the z: Ax]-Bx =poL —(EX)V =(UN)V —=(UV*)
(UV) =FOL Vx(Ax — Bl‘) = A
_\(UV) =FOL HT(AT A _\B.T) = 0
(uv*) =poL Vz(Adz —-Bzx) = E
—(uv*) =poL Jxz(Az A Bzx) = |
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Bitstring analysis and degenerate square 20

o first-order logic (FOL) has no existential import

@ the categorical statements induce the partition HES"LT:
o (1 :=JxAx ANVz(Ax — Bzx)
o [y :=Jx(Ax A Bx) A Jz(Ax A —Bzx)
o (3 := JrxAx ANVx(Ax — —Bx)
o [y :=—drAx (recursive partitioning)

@ in FOL, the categorical statements constitute a degenerate square

1001 0011
Vx(dx — Bx)  Vx(Ax — —Bx) (uv) (uv*)
Ix(4x A Bx) Ix(4x A —Bx) —(uv#) —(uv)
1100 0110
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Definite descriptions and categorical statements 21

o there is a subalternation from [the z: Az|Bx to the A-statement
@ there is a subalternation from [the x: Ax]Bx to the |-statement

@ and so on...

@ summary:

the interaction between the definite description formulas and the
categorical statements gives rise to a Buridan octagon

KU LEUVEN
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Buridan octagon

22

[thex: Ax]Bx _  [thex: Ax]—Bx

Vi

—[the x: Ax]—B =

E)A@)ADY)  (EX) A (0N) A (V)

[the x: Ax] Bx —(Ex) v —(UN) v —(uv*)

“EX) v (o8 v (oY)
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Bitstring analysis 23

o the definite descriptions induce the 3-partition II75,

@ the categorical statements induce the 4-partition HFCa'}

= together, they induce the 6-partition ITFQ, = I17%) Apor ITFQL

~v1 = JaTy(Az AN Ay A x # y) AVz(Ax — Bzx)
v := Jx(Ax A Bx) A Jz(Ax A —Bzx)

3 := JxIy(Ax A Ay A x # y) AVa(Az — —Bzx)
v4 := [the : Az|Bx

5 := [the x: Az]-Bx

v := —JrAx

° HFOOCLTA is a refinement of Hs%'b
= 74 = a1 and 5 = g, while v1 V2 V v3 V 75 =foL a3

° H'(:)%LTA is a refinement of HFC%'%
= v2 = f2 and v = 4, while v V 74 =foL 1 and 73 V v5 =FoL 33
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Bitstring analysis 24

° HFOOCLTA allows us to encode every formula of the Buridan octagon

000100 000010
[thex: Ax]Bx _  [thex: Ax]—Bx
100101 001011
VYx(4x — Bx) Vx(4x — —Bx)
Ax(Ax A Bx) Ix(Ax A —Bx)
110100 011010
—[the x: Ax]—Bx —[the x: Ax]Bx

111101 111011
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Bitstring analysis 25

° HFOOCLTA is ordered along two semi-independent dimensions

o the cardinality of (the extension of) A
o the proportion of As that are B

o semi-independent: higher cardinalities allow for

more fine-grained proportionality distinctions
@ ongoing work on linguistic aspects:
o plausible partitioning process?

o split the ‘> 2'-region into ‘> 3'- and ‘= 2'-subregions  (‘both’, ‘neither’)

L=
SR
g8 — ™
p=] -
£ Y2 Y6
2% y
%% Y3 5
=2 1 0

cardinality of 4
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A related octagon 26

@ recent work on existential import in syllogistics
(Seuren, Chatti and Schang, Read)

o for every categorical statement ¢, define

e variant @imp! that explicitly has existential import JxAzx A @
e variant ¢imp? that explicitly lacks existential import JrxAx — ¢
Aimp? =roL Vz(Azr — Bx) =FoL (uv)

Iimp! =FOL EI:L’(Ax A BI‘) =FoL —|(UV*)

Eimp? =FOL Vx(Ax — —|Bac) =FOL (UV*)

Oimp! =FOL Hx(A:E A —|BCL‘) =FoL —|(UV)

Aimp! =roL dzAx A Vx(A:L‘ — BI‘) =FOoL (EX) VAN (UV)
limpz  =roL JrAz — Jx(Ax A Bx) =poL —(EX)V ~(UV*)
Eimp! =roL drAxz A Vx(Al‘ — —|BCL‘) =FOL (EX) VAN (UV*)
Oimp? =FOL drAr — Elx(Aac VAN —\Ba:) =FOL —|(EX) V —|(UV)
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A related octagon 27

@ Chatti and Schang's 8 formulas are closely related to our 8 formulas
@ Chatti and Schang's 8 formulas also constitute a Buridan octagon
e bitstring analysis: partition {Aimpt, limp! A Oimpt; Eimpt, "3z Az} = HE(Z\LT

1000 0010

—E) vo(ove) ~E) V()
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A related octagon 28

@ Buridan octagon for definite description formulas
and categorical statements
o induces the partition HEOCLTA, with 6 anchor formulas
o [the z: Ax] Bx ZpoL ANI (000100 # 100101 A 110100)
o —[the z: Az]~Bx ZroL AV | (111101 % 100101 v 110100)

@ Buridan octagon for categorical statements
that explicitly have/lack existential import

o induces the partition ITFQ%, with 4 anchor formulas

4 Aimp! =FOL Aimp? A Iimp! (1000 = 1001 A 1100)

o limp? =FoL Aimp? V limp! (1101 = 1001 A 1100)
@ summary:

e one and the same Aristotelian family (Buridan octagons)

o different Boolean subtypes IS lecture 4
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The role of existential import 29

@ until now: only worked in ordinary first-order logic (FOL)

o Chatti and Schang: deal with existential import by adding (—)3zAx as
conjunct/disjunct to the categorical statements

@ alternative approach:

e existential import # property of individual formulas
e existential import = property of underlying logical system

@ introduce new logical system SYL:

e SYL = FOL + dzAx
o interpreted on FOL-models (D, I) such that I(A4) # 0

e analogy with modal logic:
» KD=K+ QT
> interpreted on serial frames,
i.e. K-frames (W, R) such that R[w] # 0 (for all w € W)

KU LEUVEN
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The role of existential import 30

@ move from FOL to SYL

@ influence on the categorical statements:

e e.g. A and E are unconnected in FOL, but become contrary in SYL, etc.
o degenerate square turns into classical square

@ no influence on the definite description formulas:

e e.g. [the x: Az]Bx and [the z: Ax]-Bx are contrary in FOL,
and remain so in SYL
o classical square remains classical square

@ no influence on the interaction between definite descriptions and
categorical statements:

e e.g. subalternation from [the : Az]Bx to A and | in FOL,
and this remains so in SYL

e from Buridan octagon to Lenzen octagon IS lecture 4
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Lenzen octagon 31
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Bitstring analysis 32

e which partition I, is induced?

e SYL is a stronger logical system than FOL

e consider =JxAx = 5 € HS(‘)YCLTA: FOL-consistent, but SYL-inconsistent

o Tgtra = Mogia — {76}
o deleting the sixth bit position = unified perspective on all changes:
A (100101) and E (001011) change from unconnected to contrary
| (110100) and O (011010) change from unconnected to subcontrary

e A (100101) and | (110100) change from unconnected to subaltern

[the 2: Az] Bz (000100) and [the x: Az|Bx (000010) are contrary
and remain so

[the z: Az]Bz (000100) and A (100101) are subaltern and remain so

KU LEUVEN
Introduction to Logical Geometry — Part 5



The role of uniqueness 33

e (EX) and (UN) play complementary roles in Russell's theory

@ introduce new logical system SYL*

o SYL* = FOL + VaVy((Az A Ay) — 2 =y)
o interpreted on FOL-models (D, I) such that [I(A)] <1

@ move from FOL to SYL*

@ no influence on the definite description formulas

o e.g. [the x: Az|Bx and [the x: Azx]-Bux are contrary in FOL,
and remain so in SYL
e classical square remains classical square

@ influence on the categorical statements:

e e.g. A and E are unconnected in FOL, but become subcontrary in SYL
o degenerate square turns into classical square
e note: this square is ‘flipped upside down’!

KU LEUVEN
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Flipped classical square 34

Vx(dx — Bx)  Vx(dx — ~Bx) Buldx 7 BY) - Fn(dx A ~Bx)

In(dx A Bx)  Fx(Ax A —Bx) Vx(dx — Bx)  Vx(Ax — —Bx)

@ example: take A to be the predicate ‘monarch of country C"
@ then always [I(4)| <1

e if C'is a monarchy, then [I(A)| =1
e if C is a republic, then [I(A)] =0
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The role of uniqueness 35

@ move from FOL to SYL*

@ influence on the interaction between definite descriptions and
categorical statements
e e.g. [the : Az]|Bz and the E-statement go from FOL-contrary to
SYL*-contradictory
e e.g. in FOL there is a subalternation from [the z: Az|Bx to the
I-statement, but in SYL* they are logically equivalent to each other

o pairwise collapse of def. descr. formulas and categorical statements:

[the x: Az|Bx  =gy1+ | = Zz(Az A Bzx)
—[the x: Az]Bx  =g¢y.» E = Vz(Az — —Bx)
[the z: Az]-Bz =gy;» O = IZz(Ax A-Bzx)

—[the x: Az]-Bx =gy.+ A = Vz(Az — Bx)

e from Buridan octagon to collapsed (flipped) classical square

KU LEUVEN
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Collapsed flipped classical square 36

x(4x A Bx) Ax(4x A —Bx)
[the x: Ax]Bx [the x: Ax]—Bx

—[the x: Ax]-Bx —[the x: Ax] Bx
Vx(4Ax — Bx)  Vx(dx — —Bx)
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Bitstring analysis 37

@ elementary calculation yields the partition H?_-\S-L*L

= {3z Az ANVx(Ax — Bzx),JzAx ANVz(Ax — —Bz), ~JrAx}

SYL* __ 17FOL
° Meoi, = Mocra — {7172, 73}
e SYL* is a stronger logical system than FOL
® 71,72,73 are FOL-consistent, but SYL*-inconsistent
SYL* _ y7FOL
o 2o = Urpp
o 1179 is the partition for the def. descr. square in FOL

e moving from FOL to SYL* did not change this square
o but did cause it to coincide with the categorical statement square

SYL* __ y7FOL
o lzp, = Mear — {B2}
° HEE’\'; is the partition for the cat. statement square in FOL
e SYL* is a stronger than FOL; f35 is FOL-consistent, but SYL*-inconsistent

e moving from FOL to SYL* triggered change from degen. square to
(flipped) classical square, which coincides with the def. descr. square
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Summary of the case study 38

@ Aristotelian diagrams for Russell's theory of definite descriptions
o classical square, JSB hexagon, Buridan octagon. ..
o the formula —[the z: Az]-Bx and its interpretation,
negations of [the x: Ax]Bux relative to different subuniverses. . .

@ phenomena and techniques studied in logical geometry
e bitstring analysis, Boolean closure. ..
e Boolean subtypes, logic-sensitivity. . .

logical geometry

historical and contemporary applications
of Aristotelian diagrams
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Structure of the course 39

1. Basic Concepts and Bitstring Semantics

2. Abstract-Logical Properties of Aristotelian Diagrams, Part |
IS” Aristotelian, Opposition, Implication and Duality Relations

3. Visual-Geometric Properties of Aristotelian Diagrams
B2 Informational Equivalence, Symmetry and Distance

4. Abstract-Logical Properties of Aristotelian Diagrams, Part Il
5" Boolean Structure and Logic-Sensitivity

5. Case Studies and Philosophical Outlook
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The philosophy of logical geometry 40

o recall the guiding metaphor:

o Aristotelian diagrams constitute a language
o logical geometry is the linguistics that studies that language

@ double motivation for logical geometry:

o Aristotelian diagrams as objects of independent interest
o Aristotelian diagrams as a widely-used language

o fundamental question:

o why are Aristotelian diagrams used so widely to begin with?
o which reasons do the authors themselves offer for their usage?

(practice-based philosophy of logic)

KU LEUVEN
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Four possible explanations 41

© the received view: Aristotelian diagrams as pedagogical devices
© the multimodal nature of Aristotelian diagrams
© the implicit normativity of the tradition of using Aristotelian diagrams

Q Aristotelian diagrams as heuristic tools

@ these explanations are not mutually exclusive

@ Avristotelian diagrams as technologies or instruments

e a technology can be created with one function in mind
e and later acquire another function
o the latter can even become the primary function

KU LEUVEN
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The received view: pedagogical devices 42

@ Aristotelian diagrams are mainly pedagogical devices
@ visual nature = mnemonic value

@ helpful to introduce novice students to the abstract discipline of logic

o Kruja et al., History of Graph Drawing, 2002:

“Squares of opposition were pedagogical tools used in the teaching of
logic ... They were designed to facilitate the recall of knowledge that
students already had"”

@ Nicole Oresme, Le livre du ciel et du monde, 1377:
“In order to illustrate this, | clarify it by means of a figure very similar to
that used to introduce children to logic.”

(Et pour ce mieux entendre, je le desclaire en une figure presque semblable a une que
I'en fait pour la premiere introduction des enfans en logique.)
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Scholastic and contemporary textbooks 43
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Student notes (Ludovicus Bertram, Leuven, ca. 1781) 44
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Problem 45

@ the received view was accurate in the past:
Aristotelian diagrams indeed were primarily/exclusively teaching tools

@ but today, Aristotelian diagrams occur

e not only in textbooks on logic

e but mainly in research-level papers/monographs on various disciplines
(logic, linguistics, psychology, computer science, etc.)
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The multimodal nature of Aristotelian diagrams 46

@ Aristotelian diagrams offer cognitive advantages, because of their
multimodal nature (visual + symbolic/textual)

@ Aristotelian diagrams as a visual summary of some of the key
properties of the logical system under investigation

@ analogy: graph vs. raw numeric data

@ comparison with the received view:

o both emphasize the cognitive advantages of Aristotelian diagrams
e the second view accommodates teaching and research contexts
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Illustrations 47

@ Béziau, 2013:

“The use of such a coloured diagram is very useful to understand in a
direct, quick and synthetic way basic notions of modern logic,
corresponding to the notion of Ubersichtlichkeit [surveyability] that
Wittgenstein was fond of”

@ Ciucci, Dubois & Prade, 2015:
“Opposition structures are a powerful tool to express all properties of

rough sets and fuzzy rough sets w.r.t. negation in a synthetic way.”

@ Eilenberg & Steenrod, 1952 (commutative diagrams in alg. topology):

“The diagrams incorporate a large amount of information. Their use
provides extensive savings in space and in mental effort.”
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Problem 48

@ the second view fits well with visually ‘simple’ diagrams such as the
square of opposition

@ but what about more visually complex diagrams?

0110
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The normativity of tradition 49

@ Aristotelian diagrams have a very rich and respectable tradition
within the broader history of logic: many famous authors made use of
these diagrams

@ the tradition of using Aristotelian diagrams gets endowed with a kind of
(implicit) normativity (tradition itself as object of reverence)

@ Banerjee et al., 2018:

“many artificial intelligence knowledge representation settings are
sharing the same structures of opposition that extend or generalise the
traditional square of opposition which dates back to Aristotle”

@ Ciucci, 2016:

“The study of oppositions starts in ancient Greece and has its main
result in the Square of Opposition by Aristotle. In the last years, we can
assist to a renewal of interest in this topic.”
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Problem 50

e this provides a (partial) explanation as to why we continue to use
Aristotelian diagrams

o it takes the tradition of using Aristotelian diagrams as its starting point

@ but how/why did this tradition start in the first place?
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Aristotelian diagrams as heuristic tools 51

@ Aristotelian diagrams as heuristic tools

@ they enable researchers

e to draw high-level analogies between seemingly unrelated frameworks
e to introduce new concepts (by transferring them across frameworks)

@ Aristotelian relations = ‘right’ layer of abstraction

e not overly specific (otherwise, no analogies are possible)
o not overly general (otherwise, the analogies become vacuous)
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Examples: drawing analogies 52

@ Ciucci et al., 2014:

The Structure of Oppositions in Rough Set Theory and Formal Concept
Analysis - Toward a New Bridge between the Two Settings

@ Dubois et al., 2015:

The Cube of Opposition - A Structure underlying many Knowledge
Representation Formalisms

@ Read, 2012:

“Buridan was able [...] to exhibit a strong analogy between modal,
oblique and nonnormal propositions in his three octagons”
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Examples: introducing new concepts 53

e think back of —[the z: Az]-Bx from the case study

@ Yao, 2013:

“With respect to the four logic expressions of the square of opposition,
we can identify four subsets of attributes. [...] While the set of core
attributes is well studied, the other [three] sets of attributes received
much less attention.”
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Logical geometry: a look toward the future 54
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Strategy for the future

55

typology

e discover systematic
regularities in logical behavior

e extrapolate new diagrams
and predict their behavior

| Period

Group—1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2
He
) 7 sSIe 7|82 |2
Be B |LC LN JLO | _F |Ne
3 12 13|[14][15]|[16|[ 17 |[ 18
Mg Al || Si | P |.S |.CI| Ar
4 20 |[21][22][23|[24|[25]|[26|[27|[28][29|[30|[31|[32][33 [ 3435 36
Ca || Sc|[ Ti | V || Cr|Mnj Fe| Co| Ni|CulZn| Ga|Ge| As| Se]| Br| Kr
5 383940 |[41|[42][43|[44][45][ 4647|4849 505152 53] 54
Sr|[ Y || Zr |[Nb||Mo|| Tc [[Ru||[Rh || Pd || Ag [[Cd|[ In |[Sn || Sb| Te || I |[Xe
6 56 72 |[73|[74][75]|[76|[77|[78][79|[80|[81 |[82][83 ][ 84| 85| 86
Ba Hf || Ta || W |[Re || Os || Ir || Pt || Au |[Hg || TI || Pb || Bi || Po || At |[Rn
7 88 104][105][106][107][108][109][110][111][112][113][114][115][116][117][118
Ra Rf || Db || Sg || Bh || Hs || Mt || Ds || Rg || Cn |[Uut|| FI ||Uup|| Lv ||Uus||Uuo|
N 5758159606162 63 64 65| 66| 67| 68|69 70| 71
Lantnanices [ 122 5 ] o] S €5 8] %[ 85 o | & [ ) 70 5
Actinides |89/ 20|[91|[92|[93[94 (9596 |[97 |98 |[99 100|[101][102|[T03]
Ac || Th || Pa || U ||[Np || Pu||{Am||Cm || Bk || Cf | Es ||[Fm|[Md || No || Lr
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Strategy for the future 56

typology database

e discover systematic e help to avoid idle
regularities in logical behavior armchair theorizing

e extrapolate new diagrams e discover new types
and predict their behavior of logical behavior
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Strategy for the future 57

typology database
e discover systematic e help to avoid idle
regularities in logical behavior armchair theorizing
e extrapolate new diagrams e discover new types
and predict their behavior of logical behavior
interplay

1€

‘ e unexpected analogies )

e Aristotelian diagrams
as heuristic devices

e introducing new concepts
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Strategy for the future 58

@ Aristotelian diagrams as objects of independent interest

@ Aristotelian diagrams as a widely-used language
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The End 59

Thank you! Questions?

More info: www.logicalgeometry.org
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