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Abstract

Around the turn of the 20th century, Keynes and Johnson extended the well-known
square of opposition to an octagon of opposition, in order to account for subject
negation (e.g., statements like ‘all non-S are P ’). The main goal of this paper is
to study the logical properties of the Keynes-Johnson (KJ) octagons of opposition.
In particular, we will discuss three concrete examples of KJ octagons: the original
one for subject-negation, a contemporary one from knowledge representation, and
a third one (hitherto not yet studied) from deontic logic. We show that these three
KJ octagons are all Aristotelian isomorphic, but not all Boolean isomorphic to each
other (the first two are representable by bitstrings of length 7, whereas the third
one is representable by bitstrings of length 6). These results nicely fit within our
ongoing research efforts toward setting up a systematic classification of squares,
octagons, and other diagrams of opposition. Finally, obtaining a better theoretical
understanding of the KJ octagons allows us to answer some open questions that
have arisen in recent applications of these diagrams.

Keywords: square of opposition, octagon of opposition, Aristotelian diagram,
J. N. Keynes, W. E. Johnson, bitstring semantics, logical geometry.

1 Introduction
Almost every logician is familiar with the so-called square of opposition. This di-
agram visualizes the logical relations that obtain between the four categorical state-
ments, which are of the form ‘all/some/no/not all S are P ’. Around the turn of the 20th
century, philosophical logicians such as Keynes (1894) and Johnson (1921) extended
the square to an octagon of opposition, in the context of their investigations on subject
negation, i.e., statements of the form ‘all/some/no/not all non-S are P ’. The square
of opposition and its various extensions are nowadays called Aristotelian diagrams,
because of their historical origins in the logical works of Aristotle.1

With a few notable exceptions, Keynes and Johnson’s octagons did not receive
much attention over the course of the 20th century.2 However, in recent years, this type
of diagram has found new heuristic applications in logic-related fields such as natural

1The received view holds that Aristotle himself did not draw the actual square diagram, but he did explic-
itly discuss the categorical statements and some of the logical relations holding between them (Londey and
Johanson, 1984). However, see Christensen (2023) for a recent dissenting voice.

2This neglect can at least partially be explained in terms of the general climate of hostility between
traditional, Aristotelian logic and mathematical, post-Fregean logic, which held sway for most of the 20th
century (Demey, 2020a).
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language semantics (Dekker, 2015) and knowledge representation (Ciucci et al., 2016;
Denœux et al., 2020). This renewed interest is part of a broader trend of studying Aris-
totelian diagrams with the formal tools and techniques of contemporary logic (Pfeifer
and Sanfilippo, 2017; Pizzi, 2016; Rybar̆ı́ková, 2016), often under the label of logical
geometry (Demey, 2021; Demey and Smessaert, 2014, 2018a,b; Roelandt, 2016).

The main goal of this paper is to study the logical properties of the Keynes-Johnson
octagons of opposition. In particular, we will discuss three concrete examples of this
type of octagon, and show that they are all Aristotelian isomorphic, but not all Boolean
isomorphic to each other. (The notions of Aristotelian isomorphism and Boolean iso-
morphism will be formally defined later in the paper.) These results nicely fit within the
ongoing effort in logical geometry toward setting up a systematic classification of Aris-
totelian families and their Boolean subfamilies.3 Finally, obtaining a better theoretical
understanding of the Keynes-Johnson octagons and the notions of Aristotelian/Boolean
isomorphism will allow us to answer some open questions and to clear up some mis-
understandings that have arisen over the past decade.

The paper is organized as follows. In Section 2 we present Keynes (1894) and John-
son (1921)’s original octagon for subject negation, discuss its historical development,
and analyze its Boolean properties by means of bitstring semantics. Next, in Section 3,
we present a second Keynes-Johnson octagon, which has recently been discussed ex-
tensively in the field of knowledge representation. We show that this second octagon is
Aristotelian as well as Boolean isomorphic to the first one. In Section 4 we then present
a third Keynes-Johnson octagon, which arises naturally in the context of deontic logic.
Crucially, we show that this third octagon is Aristotelian isomorphic, but not Boolean
isomorphic, to the first two. Section 5 puts the results of the previous three sections
in a broader theoretical context. In particular, we show that the Aristotelian family of
Keynes-Johnson (KJ) octagons has precisely two Boolean subfamilies, viz., one sub-
family of KJ octagons that are representable by bitstrings of length 7 and one subfamily
of KJ octagons that are representable by bitstrings of length 6. Finally, Section 6 wraps
things up, and mentions some potential directions for future research. It should also be
noted that throughout the paper, we have included some brief discussions of notions
and results that are defined/proved in far more detail elsewhere, which should help to
keep the paper relatively self-contained.

2 Keynes and Johnson’s Octagon for Subject Negation
In this section we will present Keynes (1894) and Johnson (1921)’s original octagon
of opposition, discuss its historical development, and analyze its Boolean properties
by means of bitstring semantics. However, in order to facilitate the comparison of this
diagram with other ones later in the paper, it will be useful to first define the Aristotelian
relations in a more precise and abstract fashion than is usually done. In general, these
relations can be defined with respect to an arbitrary Boolean algebra (Demey, 2019b;
Demey and Smessaert, 2016b):

Definition 1. Let B = ⟨B,∧B,∨B,¬B,⊤B,⊥B⟩ be a Boolean algebra. Two elements
x, y ∈ B are said to be

3When setting up such a classification, we typically restrict ourselves to diagrams that only contain con-
tingent formulas and that are closed under negation. Such diagrams always have an even number 2n of
formulas, and can also be viewed as consisting of n pairs of contradictory formulas (PCDs). A diagram
consisting of n PCDs is called a σn-diagram; for example, σ2-, σ3- and σ4-diagrams are squares, hexagons
and octagons of opposition, respectively (Demey and Smessaert, 2016a; De Klerck et al., 2023).
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Figure 1: Code for visualizing the Aristotelian relations.

B-contradictory (CDB) iff x ∧B y = ⊥B and x ∨B y = ⊤B,
B-contrary (CB) iff x ∧B y = ⊥B and x ∨B y ̸= ⊤B,
B-subcontrary (SCB) iff x ∧B y ̸= ⊥B and x ∨B y = ⊤B,
in B-subalternation (SAB) iff x ∧B y = x and x ∨B y ̸= x.

The Aristotelian geometry for B is the set consisting of the above four relations, i.e.,
AGB := {CDB,CB, SCB, SAB}. Finally, x and y are said to be B-unconnected iff they
do not stand in any of the above relations, i.e., iff (i) x ∧B y ̸= ⊥B, (ii) x ∨B y ̸= ⊤B,
(iii) x∧B y ̸= x and (iv) x∧B y ̸= y. The Aristotelian relations are visualized following
the convention shown in Figure 1.4

This definition can be seen as an abstract ‘template’: more concrete characteri-
zations of the Aristotelian relations can be obtained by plugging in concrete Boolean
algebras for B. For example, by taking B to be the powerset ℘(X) of some set X , we
can say that two setsA,B ⊆ X are ℘(X)-contrary iffA∩B = ∅ andA∪B ̸= X . This
definition also subsumes the usual, informal characterization of the Aristotelian rela-
tions. After all, if S is a standard logical system with a model-theoretic semantics |=S

and a language LS that includes the Boolean connectives, then its Lindenbaum-Tarski
algebra B(S) := LS/≡S = {[φ]S | φ ∈ LS} (where [φ]S := {ψ ∈ LS | φ ≡S ψ})
constitutes a Boolean algebra, and can thus be plugged in for B in Definition 1. It
is easy to see that this corresponds precisely to the informal characterization of the
Aristotelian relations; for example, given any two formulas φ,ψ ∈ LS, it holds that

[φ]S and [ψ]S are B(S)-contrary
iff [φ]S ∧ [ψ]S = ⊥ and [φ]S ∨ [ψ]S ̸= ⊤
iff [φ ∧ ψ]S = ⊥ and [φ ∨ ψ]S ̸= ⊤
iff |=S ¬(φ ∧ ψ) and ̸|=S φ ∨ ψ
iff φ and ψ cannot be true together and φ and ψ can be false together.

When there is no danger of confusion, we will not draw a sharp distinction between the
logical system S and its Lindenbaum-Tarski algebra B(S). For example, we will simply
say that φ and ψ are S-contrary, rather than that [φ]S and [ψ]S are B(S)-contrary. (Note
that the Aristotelian relations are thus defined up to logical equivalence; for example,
if φ ≡S φ

′ and ψ ≡S ψ
′, then φ and ψ are S-contrary iff φ′ and ψ′ are S-contrary.)

With Definition 1 in place, we now turn to Keynes (1894) and Johnson (1921)’s
octagon of opposition. This octagon visualizes the categorical statements with subject
negation. These eight statements are listed below, together with their formalizations in
the language of first-order logic.5

4Note that unconnectedness is not visualized at all. After all, unconnectedness corresponds to the absence
of any Aristotelian relation, and is thus naturally ‘visualized’ by the absence of any visual element.

5Note that these first-order formalizations completely sidestep the issues of existential import that sur-
round the categorical statements; we will return to this in Footnote 8.
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Definition 2. The eight propositions that appear in the Keynes-Johnson octagon for
subject negation:

1. all S are P ∀x(Sx→ Px)
2. some S are P ∃x(Sx ∧ Px)
3. no S are P ∀x(Sx→ ¬Px)
4. not all S are P ∃x(Sx ∧ ¬Px)
5. all non-S are P ∀x(¬Sx→ Px)
6. some non-S are P ∃x(¬Sx ∧ Px)
7. no non-S are P ∀x(¬Sx→ ¬Px)
8. not all non-S are P ∃x(¬Sx ∧ ¬Px)

The set consisting of these eight propositions will be denoted Fsn.

These statements have a long history in logic. In his De interpretatione, Aristotle
already examined the various opposition relations that obtain between sentences such
as‘every man walks’, ‘every man does not walk’, ‘every not-man walks’, ‘every not-
man does not walk’, etc. (Wilkinson Miller, 1938; Ackrill, 1963; Jones, 2010). These
investigations were continued by Apuleius and Boethius (Alvarez and Correia, 2017;
Correia, 2009, 2017), and in medieval logic, subject negation was discussed under the
heading of ‘infinitizing negation’ (Parsons, 2008, 2014). The topic was also studied by
Arabic logicians such as Avicenna (Hodges, 2018), and in the 20th century, it continued
to gather the interest of renowned logicians such as Haskell B. Curry (1936) and Arthur
N. Prior (1955).

In order to visualize the logical relations holding between the eight statements of
Fsn, one needs an octagon of opposition, as shown in Figure 2. A version of this dia-
gram first appeared in the third edition of John N. Keynes’ Studies and Exercises in For-
mal Logic (Keynes, 1894, p. 113).6 Keynes acknowledged the help of William E. John-
son in setting up this octagon, and the same diagram also appeared in the latter’s text-
book (Johnson, 1921, p. 142). Throughout the 20th century, this octagon has been dis-
cussed — albeit sometimes in very different shapes, e.g., as a three-dimensional cube
instead of a two-dimensional octagon — by authors such as de Laguna (1912), Dopp
(1949, 1960), Thomas (1949), Grosjean (1972), Hacker (1975) and Sauriol (1976). In
more recent years, it has been studied by philosophers and logicians such as Moktefi
and Shin (2012), Dekker (2015), Demey (2015), Garcı́a-Cruz (2017) and Moktefi and
Schang (2023), but it has also received ample attention from mathematicians and com-
puter scientists such as Libert (2012), Ciucci et al. (2012, 2015), Dubois and Prade
(2012, 2015a) and Dubois et al. (2015a,b, 2017a,b).

The Keynes-Johnson octagon for subject negation is to be interpreted on the as-
sumption that the subject and predicate terms are neither empty nor exhaustive of the
entire universe. Most authors were very explicit about this assumption. For example,
Johnson (1921, pp. 139–140) wrote: “In what follows we shall adopt the traditional
view that there are instances of S, of non-S, of P , and of non-P ; and on this assump-
tion we proceed to consider all the formal relations amongst the propositions involving
S or non-S with P or non-P ” (notation adapted to match that of the present paper).
Formally, this means that the eight formulas from Fsn are interpreted relative to the

6 The first (1884) and second (1887) editions of this work contain the traditional square, but not yet the
octagon. The last major edition of this work, viz., the fourth (1906), also contains the octagon. Note that for
reasons of space, we are here focusing exclusively on published materials. Recent archival work has shown
that some of Augustus De Morgan’s handwritten notes (dated February 1853) contain several versions of this
octagon as well (Heinemann and Demey, 2022).
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Figure 2: Octagon of opposition for (Fsn,EFOL).

logical system EFOL (for ‘existential first-order logic’), which has the same language
LFOL as ordinary FOL, but is axiomatized by adding ∃xFx and ∃x¬Fx (for any unary
predicate symbol F ) as additional axioms to FOL. This logical system is naturally in-
terpreted on first-order models ⟨D, I⟩ (with domain D and interpretation function I)
that satisfy the additional requirement that ∅ ≠ I(F ) ̸= D for all unary predicate sym-
bols F .7,8 Its Lindenbaum-Tarski algebra B(EFOL) is a Boolean algebra, and can thus
be plugged into Definition 1. In this way we can characterize the Aristotelian relations
that obtain between the categorical statements with subject negation, as shown in the
Keynes-Johnson octagon in Figure 2. We briefly discuss two examples:

• ∀x(Sx→ Px) and ∀x(Sx→ ¬Px) are EFOL-contrary

Suppose, toward a contradiction, that these formulas are both satisfied by an
EFOL-model ⟨D, I⟩. Then it would follow that I(S) = ∅, which is ruled out by
the definition of EFOL-model. Hence, |=EFOL ¬(∀x(Sx → Px) ∧ ∀x(Sx →
¬Px)). On the other hand, it is easy to see that there does exist an EFOL-
model ⟨D, I⟩ in which these formulas are both false; for example, one can take

7The system EFOL has also been called SYL (for ‘syllogistics’), cf. Demey and Smessaert (2018b) and
Smessaert and Demey (2023), as well as FOL∃, which is intertranslatable with QUARC, cf. Ben-Yami (2014,
forthcoming) and Raab (2016). More importantly, note that EFOL is not closed under uniform substitution:
for example, ∃xFx is an EFOL-tautology but ∃x(Fx ∧ ¬Fx) is not. Since the principle of uniform
substitution is often viewed as the technical counterpart of the philosophical idea that logic is a purely formal
enterprise, this failure of uniform substitution might be seen as not merely a technical property of EFOL,
but rather a fundamental philosophical objection against this logical system. However, there are many other
well-known logics that fail to be closed under uniform substitution, such as Carnap’s (1947) modal logic
C, data logic DL (Veltman, 1985), public announcement logic PAL (van Ditmarsch et al., 2007; Holliday
et al., 2013) and inquisitive logic InqL (Ciardelli et al., 2019). Recently, Punčochář (2023) has argued
that failure of uniform substitution does not undermine the philosophical idea that logic is a purely formal
enterprise. Rather, there is a much weaker technical principle, called closure under syntactically isomorphic
substitution (Schurz, 2001), which captures this philosophical idea more closely, and which does hold for all
of the aforementioned logical systems (including EFOL).

8Note that we take ‘existential import’ to be a property of the underlying logical system (cf. the addi-
tional axioms of EFOL and the additional requirements on EFOL-models). Alternatively, we could have
interpreted it as a property of individual formulas, which would mean that we continue to work in ordinary
FOL, and add the required assumptions as conjuncts to the formulas. For example, the formalization of ‘all
S is P ’ would then have to be ∀x(Sx → Px) ∧ ∃xSx ∧ ∃x¬Px. (Note that ∃x¬Sx and ∃xPx do not
have to be added as conjuncts, because they are already entailed by the conjunction as stated.) Both of these
methods of formalizing the intuitive notion of existential import have their advantages and disadvantages,
but in this paper we have chosen to view it as a property of the logical system, because this seems to remain
closest to Keynes and Johnson’s original intentions (cf. the quotation given above).
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D := {a, b, c}, I(S) := {a, b} and I(P ) := {a}. Hence, ̸|=EFOL ∀x(Sx →
Px) ∨ ∀x(Sx→ ¬Px).

• ∀x(Sx→ Px) and ∀x(¬Sx→ Px) are EFOL-contrary

Suppose, toward a contradiction, that these formulas are both satisfied by an
EFOL-model ⟨D, I⟩. Then it would follow that I(P ) = D, which is ruled out by
the definition of EFOL-model. Hence, |=EFOL ¬(∀x(Sx → Px) ∧ ∀x(¬Sx →
Px)). On the other hand, it is again easy to see that there does exist an EFOL-
model in which these formulas are both false, and hence ̸|=EFOL ∀x(Sx→ Px)∨
∀x(¬Sx→ Px).

It should be emphasized that these Aristotelian relations obtain relative to the log-
ical system EFOL. If we move to another logical system, we might lose or gain
some relations. On the one hand, we can move from EFOL to the weaker system
of FOL. In that case, we would lose all Aristotelian relations, except for the four
contradiction relations. For example, ∀x(Sx → Px) and ∀x(Sx → ¬Px) are EFOL-
contrary, but FOL-unconnected.9 On the other hand, we can move from EFOL to the
stronger system REFOL, which was first studied by Reichenbach (1952). This sys-
tem contains two more axioms, viz., ∃x(Sx ↔ Px) and ∃x(Sx ↔ ¬Px), and re-
quires the additional conditions on first-order models ⟨D, I⟩ that I(S) ̸= D\I(P ) and
I(S) ̸= I(P ).10 In this case, we would gain some additional Aristotelian relations. For
example, ∀x(Sx → Px) and ∀x(¬Sx → ¬Px) are EFOL-unconnected, but REFOL-
contrary.11 These considerations show that the Keynes-Johnson octagon for subject
negation is highly sensitive to the details of the underlying logical system. This logic-
sensitivity of Aristotelian diagrams is a well-known phenomenon in logical geometry
(Demey, 2015; Demey and Frijters, 2023).

We will now investigate the Boolean properties of the Keynes-Johnson octagon for
subject negation, by computing its bitstring semantics. Bitstrings are combinatorial
representations of formulas that provide a concrete grip on the logical behavior of a
given Aristotelian diagram. Demey and Smessaert (2018b) describe in detail how to
compute the bitstring semantics of any Aristotelian diagram in the context of logical
systems; we will here briefly describe the key steps of this technique in the context of
Boolean algebras.

Definition 3. Given a fragment F = {x1, . . . , xm} of some Boolean algebra B, the
partition of B induced by F is defined as

ΠB(F) := {a ∈ B | a = ±x1 ∧B · · · ∧B ±xm, and a ̸= ⊥B}

(where +x = x and −x = ¬Bx).12 Furthermore, the Boolean closure of F in B,
denoted B(F), is the smallest Boolean subalgebra of B that contains F .

9In particular, these two formulas can be true together in FOL, as they are both satisfied by any first-order
model ⟨D, I⟩ which has I(S) = ∅. Note that such structures are models of FOL, but not of EFOL.

10Reichenbach (1952, pp. 3–4) himself describes this as follows: “none of the four classes S, P , S, P , is
empty and no two of them are identical” (emphasis added).

11The presence of these additional Aristotelian relations means that Reichenbach (1952)’s diagram in
REFOL is fundamentally different from Keynes (1894) and Johnson (1921)’s diagram in EFOL; more pre-
cisely, these two diagrams are not Aristotelian isomorphic to each other (cf. Definition 6). It is thus incorrect
to simply identify these two diagrams with one another, as is done by Ciucci et al. (2015, 2016) and Dubois
et al. (2017a,b). We will briefly revisit Reichenbach’s diagram in Footnote 29.

12The set ΠB(F) is called a ‘partition’ of B because its elements are (i) jointly exhaustive, i.e.,∨
B ΠB(F) = ⊤B, and (ii) mutually exclusive, i.e., a ∧B a′ = ⊥B for distinct a, a′ ∈ ΠB(F).
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Informally, B(F) contains the Boolean combinations of elements from F , and
nothing else. It can be shown that every element in the Boolean closure of F is a
join of elements of the partition induced by F : for every y ∈ B(F) we have

y =
∨
B
{a ∈ ΠB(F) | a ≤B y}

(where a ≤B y means that a ∧B y = a, as usual). The notation format of bitstrings is
then introduced to ‘keep track’ of which elements of ΠB(F) enter into this join:

Definition 4. Given a fragment F of some Boolean algebra B, as in Definition 3,
the bitstring semantics βF

B : B(F) → {0, 1}|ΠB(F)| maps each element y ∈ B(F)
to its bitstring representation βF

B (y) ∈ {0, 1}|ΠB(F)|. Concretely, we fix an ordering
a1, . . . , a|ΠB(F)| of the partition ΠB(F), and for each 1 ≤ i ≤ |ΠB(F)|, we define the
ith bit position as follows:

[βF
B (y)]i :=

{
1 if ai ≤B y

0 otherwise.

For example, if ΠB(F) = {a1, a2, a3, a4} and for some y ∈ B(F) it holds that
a1 ≤B y and a3 ≤B y, then we have y = a1 ∨B a3 and write βF

B (y) = 1010. Note
that |ΠB(F)| is the length of the bitstring βF

B (y). It can be shown that βF
B is a Boolean

algebra isomorphism; hence, the Boolean closure B(F) of F contains exactly 2|ΠS(F)|

elements. The bitstring length |ΠB(F)| thus provides a direct measure of the Boolean
complexity of F .

After this quick summary of bitstring semantics, we will now apply this technique
to the Keynes-Johnson octagon for subject negation. Recall that Fsn is the set of eight
propositions that appear in this octagon (cf. Definition 2). As we have seen above,
these formulas come from the logical system EFOL, i.e., we have Fsn ⊆ B(EFOL). In
order to determine the partition of B(EFOL) that is induced by Fsn, we have to consider
all conjunctions of (possibly negated) propositions from Fsn. Many of these conjunc-
tions will turn out to be EFOL-inconsistent, and can thus be discarded. For example,
any conjunction that simultaneously contains ∀x(Sx → Px) and ∀x(Sx → ¬Px)
as conjuncts is EFOL-inconsistent, because those two formulas are EFOL-contrary.
By systematically going through all conjunctions of this form, rewriting the conjunc-
tions as simpler, EFOL-equivalent propositions whenever possible, and discarding the
EFOL-inconsistent conjunctions, we find the partition induced by the Keynes-Johnson
octagon for subject negation:

ΠEFOL(Fsn) = { α1 := ∀x(Sx→ Px) ∧ ∀x(¬Sx→ ¬Px),
α2 := ∀x(Sx→ Px) ∧ ∃x(¬Sx ∧ Px),
α3 := ∀x(Sx→ ¬Px) ∧ ∀x(¬Sx→ Px),
α4 := ∀x(Sx→ ¬Px) ∧ ∃x(¬Sx ∧ ¬Px),
α5 := ∃x(Sx ∧ ¬Px) ∧ ∀x(¬Sx→ ¬Px),
α6 := ∃x(Sx ∧ Px) ∧ ∀x(¬Sx→ Px),
α7 := ∃x(Sx ∧ Px) ∧ ∃x(Sx ∧ ¬Px) ∧

∃x(¬Sx ∧ Px) ∧ ∃x(¬Sx ∧ ¬Px) }.

For ease of notation, we will write the bitstring semantics βFsn
EFOL that corresponds

to this partition simply as βsn. Since |ΠEFOL(Fsn)| = 7, the Keynes-Johnson octagon
for subject negation can be represented by means of bitstrings of length 7. For ex-
ample, since ∀x(Sx → Px) is EFOL-equivalent to α1 ∨ α2, it can be represented
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Figure 3: Bitstring semantics βsn for the octagon of opposition for (Fsn,EFOL).

as the bitstring 1100000, i.e., βsn(∀x(Sx → Px)) = 1100000. The bitstrings of
all eight propositions in the Keynes-Johnson octagon for subject negation are shown
in Figure 3.13 Finally, since |ΠEFOL(Fsn)| = 7, it follows that the Boolean closure
of the Keynes-Johnson octagon for subject negation is isomorphic to {0, 1}7, i.e.,
BEFOL(Fsn) ∼= {0, 1}7. This Boolean closure thus contains 27 = 128 elements, i.e.,
there exist 128 distinct Boolean combinations of the categorical statements with subject
negation.

To conclude this section, we note that the seven elements of ΠEFOL(Fsn) describe
the seven relations that can obtain between two sets S and P — on the assumption that
∅ ̸= S, P ̸= D. This connection was already discussed in detail by Keynes (1894,
pp. 140–144) and Johnson (1921, pp. 144–155).14 Furthermore, if the sets S and P
are viewed as sets of possible worlds, i.e., as propositions, then the seven elements of
ΠEFOL(Fsn) also describe the seven relations that can obtain between two propositions
φ and ψ — on the assumption that φ and ψ are contingent.15 In Smessaert and De-
mey (2014) it is shown that these seven relations naturally cluster together into (i) the
opposition relations of contradiction (α3), contrariety (α4) and subcontrariety (α6),
(ii) the implication relations of bi-implication (α1), left-implication (α2) and right-
implication (α5), and finally, (iii) unconnectedness (α7), which indicates the absence
of any opposition or implication relation. Furthermore, these seven relations can be
ordered according to their informativity, with contradiction and bi-implication being
the most informative relations and unconnectedness being the least informative.16

13Also cf. Moktefi and Schang (2023, Figure 11).
14Also cf. Moktefi and Schang (2023, Figure 3).
15This was already hinted at by Keynes in the fourth edition of his Studies and Exercises in Formal Logic:

“These seven possible relations between propositions (taken in pairs) will be found to be precisely analogous
to the seven possible relations between classes (taken in pairs)” (1906, p. 119), and: “this sevenfold scheme
of class relations should be compared with the sevenfold scheme of relations between propositions” (1906,
p. 174).

16This informativity ordering is discussed in detail by Smessaert and Demey (2014). The same ordering is
also obtained by Alvarez-Fontecilla (2016), whose notion of the ‘strength’ of a logical relation corresponds
to our notion of ‘informativity’. For further discussion about the seven relations between sets/propositions,
see Doyle (1952), Prior (1953), Menne (1954), Rose (1957), Czeżowski (1958), Baker (1977), Kennedy
(1985), Furs (1987), Johnson (1997), Humberstone (2013) and Łukasiewicz (2017), as well as the textbooks
by Cohen and Nagel (1930), Stebbing (1930, 1934), Lemmon (1965) and Hamblin (1967).
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3 An Octagon for Knowledge Representation
In this section we will analyze a second Keynes-Johnson octagon, which has recently
been used extensively in the heuristics of knowledge representation (Amgoud and
Prade, 2013; Ciucci et al., 2014, 2016; Dubois and Prade, 2015a,b; Dubois et al., 2015b;
Denœux et al., 2020).17 This octagon is based on a binary relation R ⊆ X × Y and
a subset S ⊆ Y . With these ingredients, one can define the set R(S) := {x ∈ X |
∃s ∈ S : xRs}. By applying set-theoretical complementation to the set S (relative to
Y ), to the relation R (relative to X × Y ) or to the resulting set R(S) (relative to X),
we obtain a total number of eight subsets of X .

Definition 5. The eight sets that appear in the Keynes-Johnson octagon for knowledge
representation:

1. R(S) = {x ∈ X | ∃s ∈ S : xRs}
2. R(S) = {x ∈ X | ∃s ∈ S : xRs}
3. R(S) = {x ∈ X | ∃s ∈ S : ¬xRs}
4. R(S) = {x ∈ X | ∃s ∈ S : ¬xRs}
5. R(S) = {x ∈ X | ¬∃s ∈ S : xRs} = {x ∈ X | ∀s ∈ S : ¬xRs}
6. R(S) = {x ∈ X | ¬∃s ∈ S : xRs} = {x ∈ X | ∀s ∈ S : ¬xRs}
7. R(S) = {x ∈ X | ¬∃s ∈ S : ¬xRs} = {x ∈ X | ∀s ∈ S : xRs}
8. R(S) = {x ∈ X | ¬∃s ∈ S : ¬xRs} = {x ∈ X | ∀s ∈ S : xRs}

The set consisting of these eight sets will be denoted Fkr.

Depending on the specific interpretation that one assigns to X , Y and R, one ob-
tains various concrete knowledge representation formalisms. For example, if we inter-
pret X as a set of objects, Y as a set of properties, and R as expressing which objects
have which properties, then we are working in formal concept analysis. By contrast, if
we assume that X = Y and interpret both as a set of arguments, and take R to express
the attack relation between arguments, then we are in formal argumentation theory.
Taking X = Y to be a set of objects and R to be an indiscernibility relation on objects
leads us to the formalism of rough set theory. Finally, if we interpret X = Y as a set
of possible worlds and R as an accessibility relation on possible worlds, we are work-
ing in modal logic; for example, in a given Kripke model M = ⟨X,R, V ⟩, we have
[[♢p]]M = R([[p]]M).18 Since this relational perspective underlies such a wide variety of
knowledge representation formalisms, the diagrams it gives rise to can help to explore
fruitful parallels between different formalisms, establish new bridges, and investigate
new notions by transferring them from one formalism to another (Ciucci et al., 2014;
Dubois et al., 2015b; Denœux et al., 2020). Furthermore, this heuristic role does not
have to remain limited to specific applications within knowledge representation, since
relationally-inspired diagrams also allow us to bridge entire research areas, such as
artificial intelligence, linguistics and philosophy (Marquis et al., 2020).

The Keynes-Johnson octagon for knowledge representation is to be interpreted on
the assumption that the relations R and R are both serial (i.e., for all x ∈ X , there exist
y, y′ ∈ Y such that xRy and not xRy′) and that the set S ⊆ Y is non-trivial, i.e., ∅ ̸=

17In most of these papers, the diagram is shown as a three-dimensional cube instead of a two-dimensional
octagon, but this difference in visualization is irrelevant from a logical perspective.

18As usual, [[φ]]M denotes the truth set of the formula φ in M, i.e., [[φ]]M := {x ∈ X | M, x |= φ}.
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Figure 4: Octagon of opposition for (Fkr, ℘(X)).

S ̸= Y (Ciucci et al., 2016, p. 355).19 The eight sets given in Definition 5 are subsets
of X , and thus elements of the Boolean algebra ℘(X). By means of Definition 1 we
can thus characterize the Aristotelian relations that obtain between these eight sets, as
shown in the Keynes-Johnson octagon in Figure 4. For example, in order to see that
R(S) and R(S) are ℘(X)-contrary, we have to check the following two conditions:

• R(S) ∩R(S) = ∅

Suppose, toward a contradiction, that there is some x ∈ R(S) ∩R(S). It would
follow that for all s ∈ S, both xRs and not xRs. This means that S = ∅, which
contradicts our assumption that S ̸= ∅.

• R(S) ∪R(S) ̸= X

Take any x ∈ X such that ∃s ∈ S : xRs and ∃s ∈ S : ¬xRs (the existence of
such an x is not ruled out by our assumptions thatR andR are serial and that ∅ ≠

S ̸= Y ). Hence x ∈ R(S)∩R(S) and thus x /∈ R(S) ∩R(S) = R(S)∪R(S).
This shows that R(S) ∪R(S) ̸= X .

Upon visual inspection, it becomes immediately clear that the octagon for subject
negation in Figure 2 and the octagon for knowledge representation in Figure 4 exhibit
the same configuration of Aristotelian relations among their eight vertices.20 In order
to make this intuition more precise, we introduce the notion of an Aristotelian isomor-
phism (Demey and Smessaert, 2018b).

Definition 6. Consider two Boolean algebras B and B′, and two fragments F ⊆ B
and F ′ ⊆ B′. An Aristotelian isomorphism is a bijection γ : F → F ′ such that for all
relations R ∈ AGB and for all x, y ∈ F : RB(x, y) iff RB′(γ(x), γ(y)).

19Ciucci et al. (2016, p. 355) also assume that the transposed relations Rt and Rt = R
t are serial, but

those additional assumptions are only needed to construct yet another Keynes-Johnson octagon, starting from
a non-trivial subset T ⊆ X (i.e., ∅ ̸= T ̸= X).

20This is by no means surprising, given that the characterizations of the X-subsets in Definition 5 take on
the form of categorical statements with subject negation. However, later in this paper we will see that the
same situation can also arise without any underlying syntactic similarity.
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Recall that Fsn and Fkr are the sets of propositions/sets appearing in Figures 2
and Figure 4, respectively (cf. Definitions 2 and 5). It is now easy to check that the
function γ : Fsn → Fkr defined below is indeed an Aristotelian isomorphism. For
example, note that ∀x(Sx → Px) and ∀x(Sx → ¬Px) are EFOL-contraries, while
γ(∀x(Sx→ Px)) and γ(∀x(Sx→ ¬Px)), i.e.,R(S) andR(S), are ℘(X)-contraries.

φ ∈ Fsn 7→ γ(φ) ∈ Fkr

∀x(Sx→ Px) 7→ R(S)

∃x(Sx ∧ Px) 7→ R(S)

∀x(Sx→ ¬Px) 7→ R(S)

∃x(Sx ∧ ¬Px) 7→ R(S)

∀x(¬Sx→ Px) 7→ R(S)

∃x(¬Sx ∧ Px) 7→ R(S)

∀x(¬Sx→ ¬Px) 7→ R(S)

∃x(¬Sx ∧ ¬Px) 7→ R(S)

The octagon for subject negation in Figure 2 and the octagon for knowledge rep-
resentation in Figure 4 are thus Aristotelian isomorphic to each other. Using more
classification-oriented terminology, we say that these two diagrams belong to the same
Aristotelian family,21 which will be called the ‘family of Keynes-Johnson (KJ) oc-
tagons’, since Keynes (1894) and Johnson (1921) were the first authors to study a
member of this family. It should be emphasized that apart from Keynes and Johnson’s
octagon for subject negation, this Aristotelian family also contains (infinitely) many
diagrams that were unknown to these historical authors. In particular, it makes perfect
sense to say that the octagon for knowledge representation in Figure 4 belongs to the
family of Keynes-Johnson octagons, without thereby implying that Keynes or Johnson
themselves knew about knowledge representation, formal concept analysis, rough set
theory, etc.22

Just like in the previous section, we now determine the bitstring semantics for the
Keynes-Johnson octagon for knowledge representation. Recall that Fkr ⊆ ℘(X) is the
set of eight X-subsets that appear in this octagon (cf. Definition 5). In order to de-
termine the partition of the Boolean algebra ℘(X) that is induced by Fkr, we have to
consider all intersections of (possibly X-complemented) sets from Fkr. By systemati-
cally going through all intersections of this form and discarding those that are empty,
we find the following partition:

21Formally, an Aristotelian family is a maximal class of Aristotelian isomorphic diagrams, i.e., a class C
such that (i) any two diagrams belonging to C are Aristotelian isomorphic to each other, and (ii) if D belongs
to C, and D is Aristotelian isomorphic to D′, then D′ also belongs to C (Demey, 2018).

22Consider the following analogy. In abstract algebra, the class of Abelian groups is named after the
mathematician Niels Abel (1802 – 1829), and contains (infinitely) many groups. Some members of this
class were studied by the historical author Niels Abel, but it also contains (infinitely) many groups that were
unknown to Abel in the early 19th century. Also cf. Demey (2019a, Footnote 14).
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Figure 5: Bitstring semantics βkr for the octagon of opposition for (Fkr, ℘(X)).

Π℘(X)(Fkr) = { A1 := R(S) ∩R(S),
A2 := R(S) ∩R(S),
A3 := R(S) ∩R(S),
A4 := R(S) ∩R(S),
A5 := R(S) ∩R(S),
A6 := R(S) ∩R(S),
A7 := R(S) ∩R(S) ∩R(S) ∩R(S) }.

For ease of notation, we will write the bitstring semantics βFkr
℘(X) that corresponds

to this partition simply as βkr. Since |Π℘(X)(Fkr)| = 7, the Keynes-Johnson octagon
for knowledge representation can also be represented by means of bitstrings of length
7. For example, since R(S) = A1 ∪A2, it can be represented as the bitstring 1100000,
i.e., βkr(R(S)) = 1100000. The bitstrings of all eight X-subsets in Fkr are shown in
Figure 5. Finally, since |Π℘(X)(Fkr)| = 7, it follows that the Boolean closure of the
Keynes-Johnson octagon for knowledge representation is isomorphic to {0, 1}7, and
thus contains 27 = 128 elements. This answers a question that was left open by Ciucci
et al. (2016), who restricted themselves to noting that “the Boolean closure of the cube
[i.e., octagon] is more complicated to compute than the Boolean closure of the square”
(p. 361).

We have already seen that the octagons for subject negation (Fsn) and for knowl-
edge representation (Fkr) are Aristotelian isomorphic: both are Keynes-Johnson oc-
tagons. In particular, the function γ : Fsn → Fkr preserves and reflects all Aristotelian
relations. However, since these two octagons have the ‘same’ Boolean closure — viz.,
{0, 1}7, up to isomorphism —, we can prove something stronger: the function γ not
only preserves and reflects all Aristotelian relations, but also all Boolean structure as
well. More precisely: γ is not only an Aristotelian isomorphism, but also a Boolean
isomorphism (Demey and Smessaert, 2018b).

Definition 7. Consider two Boolean algebras B and B′, and two fragments F ⊆ B and
F ′ ⊆ B′. A Boolean isomorphism is a bijection γ : F → F ′ that can be extended to a
Boolean algebra isomorphism f : B(F) → B′(F ′), i.e., such that γ = f ↾ F .
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Fsn Fkr

BEFOL(Fsn) B℘(X)(Fkr)

{0, 1}7

γ

βsn

f

βkr

Figure 6: Commutative diagram for γ, f , βsn and βkr.

A Boolean isomorphism γ : F → F ′ preserves all Boolean operations, to the extent
that they are defined inside of F , i.e., for all φ,ψ ∈ F , if ¬φ ∈ F then γ(¬φ) =
¬γ(φ), and if φ ∧ ψ ∈ F , then γ(φ ∧ ψ) = γ(φ) ∧ γ(ψ). The notion of Boolean
isomorphism is strictly stronger than that of Aristotelian isomorphism: it can be shown
that every Boolean isomorphism is an Aristotelian isomorphism, but not vice versa.
We will encounter an example of an Aristotelian isomorphism that is not a Boolean
isomorphism later in this paper.

To see that γ : Fsn → Fkr is a Boolean isomorphism, consider the function f :=
β−1

kr ◦ βsn : BEFOL(Fsn) → B℘(X)(Fkr). Since the bitstring semantics βsn and βkr are
Boolean algebra isomorphisms, and this notion is closed under taking inverses and
composition, the function f is a Boolean algebra isomorphism as well. Furthermore,
it is easy to see that γ = f ↾ Fsn. Consider, for example, the formula ∀x(Sx →
Px) from Fsn, and note that f(∀x(Sx → Px)) = β−1

kr (βsn(∀x(Sx → Px))) =

β−1
kr (1100000) = R(S) = γ(∀x(Sx → Px)). Informally, we first use βsn to ‘encode’

an element of Fsn as a bitstring of length 7, and consequently use β−1
kr to ‘decode’ this

bitstring into an element of Fkr.23 All of this is captured by the commutative diagram
in Figure 6: (i) since the upper rectangle commutes, it holds that γ = f ↾ Fsn, and (ii)
since the lower triangle commutes, it holds that βsn = βkr ◦ f , i.e., β−1

kr ◦ βsn = f .

4 An Octagon for Deontic Logic
In this section we will discuss one more Keynes-Johnson octagon. As far as we know,
this octagon has not appeared in the literature thus far, but it arises quite naturally
in the context of deontic logic. In particular, it can be viewed as a preliminary at-
tempt to combine the literature on normative positions (Kanger, 1971; Lindahl, 1977;
Makinson, 1986; Sergot, 2001, 2013) with that on supererogation (Chisholm, 1963;
McNamara, 1996a,b; Joerden, 1998, 2012). We work with the deontic O-, P - and
F -operators, which express that something is resp. obligatory, permitted and forbid-
den, and we make the standard assumptions that O and P are each other’s duals (i.e.,
Oφ ≡ ¬P¬φ), that Fφ ≡ O¬φ, and that O is governed by the modal logic KD (i.e.,

23If desired, the Boolean algebra isomorphism f can also be obtained without appealing to bitstrings. Note
that BEFOL(Fsn) and B℘(X)(Fkr) are both complete atomic Boolean algebras, which have ΠEFOL(Fsn) and
Π℘(X)(Fkr) as their sets of atoms, respectively. Since these two Boolean algebras have the same number of
atoms (viz., 7), they are isomorphic (Givant and Halmos, 2009, pp. 121–122).
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Oφ entails Pφ but does not entail φ). In this framework, we will consider the formulas
of the form (¬)p ∧ P (¬)p and (¬)p ∨O(¬)p.

Definition 8. The eight propositions that appear in the Keynes-Johnson octagon for
deontic logic:

1. p ∧ Pp
2. p ∧ P¬p
3. ¬p ∧ Pp
4. ¬p ∧ P¬p
5. ¬p ∨O¬p i.e., p→ Fp
6. ¬p ∨Op i.e., p→ Op
7. p ∨O¬p i.e., ¬p→ Fp
8. p ∨Op i.e., ¬p→ Op

The set consisting of these eight propositions will be denoted Fdl.

These propositions describe certain situations that naturally occur in everyday life.
For example, suppose that p states that John goes to the party. Propositions 1 and 4
describe perfectly mundane situations; for example, proposition 1 states that John goes
to the party and it is indeed permitted that he goes. By contrast, proposition 2 and 3
require a more nuanced perspective. For example, proposition 2 states that John goes
to the party even though it is permitted that he does not go (John’s going to the party
might thus amount to an act of supererogation). Furthermore, propositions 6 and 7 can
be seen as describing a conscientious person, who actively tries to meet her deontic
requirements. For example, proposition 6 states that John goes to the party only if he
is obliged to do so (one can easily imagine that John would rather not go to the party,
but only does so in order to meet his obligations). By contrast, proposition 5 and 8 can
be seen as describing a rebellious or contrarian person, who actively tries to violate her
deontic requirements. For example, proposition 5 states that John goes to the party only
if he is forbidden from doing so (one can imagine that John has no intrinsic interest in
going to the party, but only does so if he is forbidden from actually going).

As was already mentioned above, we view the eight propositions of Definition 8
as coming from the logical system KD. By plugging the Lindenbaum-Tarski algebra
B(KD) into Definition 1, we can thus characterize the Aristotelian relations that obtain
between these eight propositions, as shown in the Keynes-Johnson octagon in Figure 7.
For example, in order to see that p ∧ Pp and ¬p ∧ Pp are KD-contrary, it suffices to
check the following two conditions:

• |=KD ¬((p ∧ Pp) ∧ (¬p ∧ Pp))
After all, there exist no KD-model M and possible world w such that M, w |=
(p ∧ Pp) ∧ (¬p ∧ Pp), since that would entail M, w |= p ∧ ¬p. This means that
|=KD ¬((p ∧ Pp) ∧ (¬p ∧ Pp)).

• ̸|=KD (p ∧ Pp) ∨ (¬p ∧ Pp)
After all, there exist a KD-model M and possible world w such that M, w ̸|= Pp,
and thus also M, w ̸|= (p ∧ Pp) ∨ (¬p ∧ Pp). This means that ̸|=KD (p ∧ Pp) ∨
(¬p ∧ Pp).

Upon visual inspection, it is again immediately clear that the octagon for subject
negation in Figure 2 and the octagon for deontic logic in Figure 7 exhibit the same
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Figure 7: Octagon of opposition for (Fdl,KD).

configuration of Aristotelian relations among their eight vertices.24 More formally, it
is easy to check that the function δ : Fsn → Fdl defined below is indeed an Aristotelian
isomorphism (cf. Definition 6). For example, note that ∀x(Sx → Px) and ∀x(Sx →
¬Px) are EFOL-contraries, while δ(∀x(Sx → Px)) and δ(∀x(Sx → ¬Px)), i.e.,
p∧Pp and ¬p∧Pp, are KD-contraries. Using more classification-oriented terminology,
we say that the octagon for deontic logic in Figure 7 also belongs to the Aristotelian
family of Keynes-Johnson octagons.

φ ∈ Fsn 7→ δ(φ) ∈ Fdl

∀x(Sx→ Px) 7→ p ∧ Pp
∃x(Sx ∧ Px) 7→ p ∨O¬p

∀x(Sx→ ¬Px) 7→ ¬p ∧ Pp
∃x(Sx ∧ ¬Px) 7→ ¬p ∨O¬p
∀x(¬Sx→ Px) 7→ ¬p ∧ P¬p
∃x(¬Sx ∧ Px) 7→ ¬p ∨Op

∀x(¬Sx→ ¬Px) 7→ p ∧ P¬p
∃x(¬Sx ∧ ¬Px) 7→ p ∨Op

Just like in the previous two sections, we now determine the bitstring semantics for
the Keynes-Johnson octagon for deontic logic. First of all, we compute the partition of
the Boolean algebra B(KD) that is induced by Fdl:

ΠKD(Fdl) = { α′
1 := p ∧ Pp ∧ P¬p,
α′
2 := p ∧Op,
α′
3 := ¬p ∧ Pp ∧ P¬p,
α′
4 := ¬p ∧Op,
α′
5 := p ∧O¬p,
α′
6 := ¬p ∧O¬p }.

For ease of notation, we will write the bitstring semantics βFdl
KD that corresponds to

this partition simply as βdl. Since |ΠKD(Fdl)| = 6, the Keynes-Johnson octagon for
deontic logic can be represented by means of bitstrings of length 6. For example, since
p ∧ Pp is KD-equivalent to α′

1 ∨ α′
2, it can be represented as the bitstring 110000,

24This Aristotelian isomorphism obtains even though there is no clear-cut underlying syntactic similarity
between the propositions that appear in both octagons; recall Footnote 20.
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Figure 8: Bitstring semantics βdl for the octagon of opposition for (Fdl,KD).

i.e., βdl(p ∧ Pp) = 110000. The bitstrings of all eight propositions in Fdl are shown
in Figure 8. Finally, since |ΠKD(Fdl)| = 6, it follows that the Boolean closure of the
Keynes-Johnson octagon for deontic logic is isomorphic to {0, 1}6, and thus contains
26 = 64 elements.

We have already seen that the function δ : Fsn → Fdl is an Aristotelian isomor-
phism: it preserves and reflects all Aristotelian relations (Definition 6). However, δ is
clearly not a Boolean isomorphism: it does not preserve all Boolean operations (Defi-
nition 7). For example, note that the disjunction of the four uppermost formulas in Fig-
ure 2, i.e., ∀x(Sx → Px), ∀x(Sx → ¬Px), ∀x(¬Sx → Px) and ∀x(¬Sx → ¬Px),
is not an EFOL-tautology,25 whereas the disjunction of their δ-images, i.e., p ∧ Pp,
¬p ∧ Pp, ¬p ∧ P¬p and p ∧ P¬p in Figure 7, is a KD-tautology.26

It is also interesting to examine how δ interacts with the partitions ΠEFOL(Fsn) and
ΠKD(Fdl). For example, recall that α1 ∈ ΠEFOL(Fsn) is the conjunction ∀x(Sx →
Px) ∧ ∀x(¬Sx→ ¬Px), so if we apply δ to both conjuncts,27 we obtain δ(∀x(Sx→
Px)) ∧ δ(∀x(¬Sx → ¬Px)) = (p ∧ Pp) ∧ (p ∧ P¬p) ≡KD p ∧ Pp ∧ P¬p = α′

1 ∈
ΠKD(Fdl). This correspondence between αi ∈ ΠEFOL(Fsn) and α′

i ∈ ΠKD(Fdl) holds
for 1 ≤ i ≤ 6. If we try to determine the counterpart of α7 in the same fashion, we find
δ(∃x(Sx ∧ Px)) ∧ δ(∃x(Sx ∧ ¬Px)) ∧ δ(∃x(¬Sx ∧ Px)) ∧ δ(∃x(¬Sx ∧ ¬Px)) =
(p∨O¬p)∧(¬p∨O¬p)∧(¬p∨Op)∧(p∨Op), which turns out to be KD-inconsistent;
in other words, α7 ∈ ΠEFOL(Fsn) does not have a counterpart in ΠKD(Fdl). This means
that the bitstring representations of Fdl can be viewed as the result of systematically
deleting the seventh bit position in the bitstring representations of Fsn (compare Fig-
ures 3 and 8). This process of deleting one bit position does not have any effect on
the octagons’ Aristotelian relations (they are Aristotelian isomorphic!), but as we have
seen above, it does have a significant effect on their Boolean structure.

To make this formally precise, let d7 : {0, 1}7 → {0, 1}6 be the function that
deletes a bitstring’s seventh bit position, and consider the function g := β−1

dl ◦ d7 ◦
βsn : BEFOL(Fsn) → BKD(Fdl). It is easy to see that δ = g ↾ Fsn.28 Consider, for

25In terms of bitstrings: βsn(∀x(Sx → Px)) ∨ βsn(∀x(Sx → ¬Px)) ∨ βsn(∀x(¬Sx → Px)) ∨
βsn(∀x(¬Sx → ¬Px)) = 1100000 ∨ 0011000 ∨ 0010010 ∨ 1000100 = 1111110 ̸= 1111111.

26In terms of bitstrings: βdl(p ∧ Pp) ∨ βdl(¬p ∧ Pp) ∨ βdl(¬p ∧ P¬p) ∨ βdl(p ∧ P¬p) = 110000 ∨
001100 ∨ 001001 ∨ 100010 = 111111.

27Note that we can only apply δ to the conjuncts separately, and not to the entire conjunction, since that
conjunction does not belong to Fsn and thus falls outside the domain of δ.

28Note that this does not mean that δ is a Boolean isomorphism, since g itself is not a Boolean algebra
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Fsn Fdl

BEFOL(Fsn) BKD(Fdl)

{0, 1}7 {0, 1}6

δ

βsn

g

βdl

d7

Figure 9: Commutative diagram for δ, g, d7, βsn and βdl.

example, the formula ∀x(Sx → Px) from Fsn, and note that g(∀x(Sx → Px)) =
β−1

dl (d7(βsn(∀x(Sx → Px)))) = β−1
dl (d7(1100000)) = β−1

dl (110000) = p ∧ Pp =
δ(∀x(Sx → Px)). Informally, we first use βsn to ‘encode’ an element of Fsn as a bit-
string of length 7, then use d7 to delete the 7th bit position of that bitstring, and finally
use β−1

dl to ‘decode’ the resulting bitstring of length 6 into an element of Fdl. All of
this is captured by the commutative diagram in Figure 9: (i) since the upper rectangle
commutes, it holds that δ = g ↾ Fsn, and (ii) since the lower rectangle commutes, it
holds that d7 ◦ βsn = βdl ◦ g, i.e., β−1

dl ◦ d7 ◦ βsn = g.
We have already seen that δ : Fsn → Fdl is not a Boolean isomorphism. Further-

more, there does not exist any Boolean isomorphism between Fsn and Fdl. After all,
if there did exist a Boolean isomorphism between these two fragments, then by Defi-
nition 7 there would also exist a Boolean algebra isomorphism between their Boolean
closures; however, we have already seen that that these two Boolean closures are iso-
morphic to {0, 1}7 and {0, 1}6, respectively, and are thus not isomorphic to each other.
To summarize: the octagon for subject negation (Fsn) and the octagon for deontic logic
(Fdl) are Aristotelian isomorphic, but they are not Boolean isomorphic.29

Given its importance, it is worthwhile to repeat this conclusion once more, but now
using more classification-oriented terminology: the octagon for subject negation (Fsn)
and the octagon for deontic logic (Fdl) belong to the same Aristotelian family (viz., the
family of Keynes-Johnson octagons), but they belong to different Boolean subfamilies
of this Aristotelian family (viz., the subfamily of KJ octagons that are representable
by bitstrings of length 7 and the subfamily of KJ octagons that are representable by
bitstrings of length 6, respectively).

isomorphism (d7 is not a Boolean algebra isomorphism either).
29We are now in an ideal position to briefly revisit Reichenbach (1952)’s diagram in REFOL (also cf. Foot-

note 11). In particular, Dubois et al. (2020) claim that Reichenbach’s diagram is isomorphic to that of Moretti
(2009) (rather than to those of Keynes (1894) and Johnson (1921), as they had previously argued). This claim
is correct, but it would be good to be more precise in the formulation: Reichenbach’s and Moretti’s diagrams
are indeed Aristotelian isomorphic, but not Boolean isomorphic to each other. In particular, Moretti’s di-
agram can be represented by bitstrings of length 4, whereas Reichenbach’s diagram requires bitstrings of
length 5 (Demey, 2020b, p. 189).
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Figure 10: Generic description of the Aristotelian family of Keynes-Johnson octagons.

5 Broader Theoretical Perspective
In the previous three sections we have come across Keynes-Johnson octagons with
Boolean closure isomorphic to {0, 1}7 (viz., Fsn and Fkr) and with Boolean closure
isomorphic to {0, 1}6 (viz., Fdl). This shows that the Aristotelian family of Keynes-
Johnson octagons has at least two distinct Boolean subfamilies. It is thus natural to
ask whether there are any other Boolean subfamilies besides these two: do there exist
Keynes-Johnson octagons with a Boolean closure that is isomorphic to {0, 1}n, for
some n /∈ {6, 7}? In this section we will use the general results of Demey (2018) to
show that this is not the case. In other words, the Aristotelian family of Keynes-Johnson
octagons has precisely two Boolean subfamilies.

We start by drawing a distinction between an Aristotelian family and a ‘generic
description’ of that family. The former is an infinite collection (a proper class, even) of
concrete Aristotelian diagrams coming from all kinds of Boolean algebras; the latter is
a more abstract description of that family, which does not refer to any specific Boolean
algebra, but just specifies a configuration of Aristotelian relations holding between
elements. For example, the octagons in Figures 2, 4 and 7 are three concrete members
of the Aristotelian family of Keynes-Johnson octagons, while the generic description
of this family is shown in Figure 10. The set of elements that appear in the generic
description of an Aristotelian family A is called FA; for example, in Figure 10 we
find that FKJ = {k1, k2, k3, k4,¬k1,¬k2,¬k3,¬k4}. We emphasize, once more, that
these ki do not come from any specific Boolean algebra, but rather function as abstract
‘placeholders’ to specify a configuration of Aristotelian relations.

We now attempt to compute the partition that is induced by FKJ. We cannot
straightforwardly proceed as in the previous sections, since Definition 3 refers to a
specific Boolean algebra B, viz., in its requirement that conjunctions belonging to the
partition should be B-consistent (i.e., not equal to ⊥B). However, given an Aristotelian
family A, we can ‘approximate’ this notion of B-consistency without having to refer to
any specific Boolean algebra B.

Definition 9. Let A be an Aristotelian family, and let FA = {x1, . . . , xm} be the set
of elements that appear in the generic description of A. A meet of FA-elements is said
to be A-consistent iff it does not contain any pair of elements that are contradictory or
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contrary according to the generic description of A.

The notion of A-consistency is an ‘(upper) approximation’ of B-consistency, in the
following sense. One can easily show that B-consistency entails A-consistency, but not
vice versa. After all, it might happen that a meet of FA-elements is A-consistent while
still being B-inconsistent — namely, when the inconsistency cannot be ‘pinpointed’ to
just two elements in the meet (this is a direct counterpart of the strictly binary nature
of the Aristotelian relations). Having defined the notion of A-consistency, we can now
proceed to define the partition that is induced by FA.

Definition 10. Let FA be as in Definition 9. The partition induced by FA is defined
as Π(FA) := {a | a = ±x1 ∧ · · · ∧ ±xm, and a is A-consistent}.

For example, given FKJ as in Figure 10, we see that k1 ∧ ¬k2 ∧ k3 ∧ k4 is KJ-
inconsistent, since the first and last element of this meet (i.e., k1 and k4) are contrary
according to the generic description in Figure 10. By contrast, k1 ∧ ¬k2 ∧ k3 ∧ ¬k4
is KJ-consistent, since it does not contain any two elements that are contradictory or
contrary according to the generic description in Figure 10. Furthermore, since this
generic description specificies that k1 is contrary to k2 and k4 (and thus in subalter-
nation to ¬k2 and ¬k4), the meet k1 ∧ ¬k2 ∧ k3 ∧ ¬k4 can be simplified to k1 ∧ k3.
By systematically going through all meets of this form, simplifying whenever possible,
and discarding the KJ-inconsistent meets, we find the partition induced by the generic
description of the family of Keynes-Johnson octagons:

Π(FKJ) = { ε1 := k1 ∧ k3,
ε2 := k1 ∧ ¬k3,
ε3 := k2 ∧ k4,
ε4 := k2 ∧ ¬k4,
ε5 := ¬k1 ∧ k3,
ε6 := ¬k2 ∧ k4,
ε7 := ¬k1 ∧ ¬k2 ∧ ¬k3 ∧ ¬k4 }

Let’s consider ε1 in some more detail. First of all, note that ε1 is KJ-consistent, by
the construction of Π(FKJ). Furthermore, ε1 is also guaranteed to be B-consistent (for
any Boolean algebra B).30 After all, suppose that there exists some Boolean algebra
B such that ε1 is B-inconsistent. Since ε1 is the meet of only two FKJ-elements (after
simplification), viz., k1 and k3 (which are themselves supposed to be B-consistent),
this would mean that those elements k1 and k3 are either B-contradictory or B-contrary.
But this violates the KJ-consistency of ε1. To summarize: since ε1 is the meet of at
most two FKJ-elements, its KJ-consistency suffices to guarantee its B-consistency (for
any B). Since ε2 – ε6 are also the meets of only two FKJ-elements, exactly the same
remarks apply to them as well.

This situation stands in sharp contrast with that of ε7. Again, ε7 is KJ-consistent,
by the construction of Π(FKJ). However, since ε7 is the meet of more than two FKJ-
elements (viz., ¬k1, ¬k2, ¬k3 and ¬k4), it is not guaranteed to be B-consistent (for
every Boolean algebra B). In other words, there exist Boolean algebras in which ε7 is

30 Here are two concrete examples. First of all, with respect to the Boolean algebra B(EFOL) and the
fragment Fsn (cf. Figure 2), the placeholders k1 and k3 get interpreted as ∀x(Sx → Px) and ∀x(¬Sx →
¬Px), respectively, and hence, ε1 = k1 ∧ k3 gets interpreted as ∀x(Sx → Px) ∧ ∀x(¬Sx → ¬Px),
which is EFOL-consistent. Secondly, with respect to the Boolean algebra B(KD) and the fragment Fdl
(cf. Figure 7), the placeholders k1 and k3 get interpreted as p ∧ Pp and p ∧ P¬p, respectively, and hence,
ε1 = k1 ∧ k3 gets interpreted as (p ∧ Pp) ∧ (p ∧ P¬p), which is KD-consistent.
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consistent, but there also exist Boolean algebras in which ε7 is inconsistent. Consider
the following examples (and compare with Footnote 30):

• the Boolean algebra B(EFOL) and the fragment Fsn (cf. Figure 2)

The placeholders k1, k2, k3 and k4 get interpreted as ∀x(Sx→ Px), ∀x(Sx→
¬Px), ∀x(¬Sx → ¬Px) and ∀x(¬Sx → Px), respectively. Hence, ε7 =
¬k1 ∧ ¬k2 ∧ ¬k3 ∧ ¬k4 gets interpreted as ∃x(Sx ∧ ¬Px) ∧ ∃x(Sx ∧ Px) ∧
∃x(¬Sx ∧ Px) ∧ ∃x(¬Sx ∧ ¬Px), which is EFOL-consistent.

• the Boolean algebra B(KD) and the fragment Fdl (cf. Figure 7)

The placeholders k1, k2, k3 and k4 get interpreted as p ∧ Pp, ¬p ∧ Pp, p ∧
P¬p and ¬p ∧ P¬p, respectively. Hence, ε7 = ¬k1 ∧ ¬k2 ∧ ¬k3 ∧ ¬k4 gets
interpreted as (¬p ∨ ¬Pp) ∧ (p ∨ ¬Pp) ∧ (¬p ∨ ¬P¬p) ∧ (p ∨ ¬P¬p), which
is KD-inconsistent. (We emphasize that this conjunction is still KJ-consistent,
since it does not contain any pair of conjuncts that are contradictory or contrary
according to the generic description of Keynes-Johnson octagons.)

We are now in a position to summarize the entire argument. The partition Π(FKJ)
consists of 7 KJ-consistent conjunctions. The formulas ε1, . . . , ε6 have at most two
conjuncts, and hence they are guaranteed by the construction of Π(FKJ) to be B-
consistent as well (for any Boolean algebra B). By contrast, ε7 has more than two
conjuncts, and hence it is not guaranteed to be B-consistent. We thus have to make
a case distinction. On the one hand, there are Boolean algebras B and KJ octagons
F ⊆ B such that ε7 is B-consistent, and hence |ΠB(F)| = 7. On the other hand, there
are Boolean algebras B and KJ octagons F ⊆ B such that ε7 is B-inconsistent, and
hence |ΠB(F)| = 6.

Since this is an exhaustive case analysis, we can thus conclude that the Aristotelian
family of Keynes-Johnson octagons has exactly two Boolean subfamilies: those which
induce a partition of 7 elements and thus have a Boolean closure isomorphic to {0, 1}7,
and those which induce a partition of 6 elements and thus have a Boolean closure iso-
morphic to {0, 1}6. The Keynes-Johnson octagons discussed in Sections 2 and 3 both
belong to the former Boolean subfamily, while the Keynes-Johnson octagon discussed
in Section 4 belongs to the latter.

6 Conclusion
In this paper, we have analyzed three concrete octagons of opposition, viz., an octagon
for subject negation (Fsn, Figure 2), an octagon for knowledge representation (Fkr,
Figure 4), and an octagon for deontic logic (Fdl, Figure 7). We have shown that these
three octagons are all Aristotelian isomorphic to each other: they all belong to the same
Aristotelian family, viz., the family of Keynes-Johnson (KJ) octagons. Furthermore,
we have also shown that the first two octagons are Boolean isomorphic to each other:
they belong to the same Boolean subfamily, viz., the subfamily of KJ octagons that
are representable by bitstrings of length 7, and thus have Boolean closures isomorphic
to {0, 1}7. Finally, we have shown that the third octagon is not Boolean isomorphic
to the first two: it belongs to a different Boolean subfamily, viz., the subfamily of
KJ octagons that are representable by bitstrings of length 6, and thus have Boolean
closures isomorphic to {0, 1}6.

The results obtained in this paper fit within the ongoing effort in logical geometry
toward setting up a systematic classification of Aristotelian families and their Boolean
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subfamilies. For example, if we focus on just the octagons of opposition, one can
show that there exist precisely 18 distinct Aristotelian families of octagons (Frijters
and Demey, 2023). For each of these families, we should determine what its Boolean
subfamilies are. Previously, Demey (2019a) has investigated the Aristotelian family of
so-called Buridan octagons, which turns out to have three Boolean subfamilies (cor-
responding to bitstrings of lengths 4, 5 and 6). In this paper we have shown that the
Aristotelian family of Keynes-Johnson octagons has precisely two Boolean subfamilies
(corresponding to bitstrings of lengths 6 and 7). By gradually filling in the details of
this systematic classification, we hope to obtain a unified perspective on Aristotelian
diagrams and their various applications across history and across scientific disciplines
(Demey, 2019c).
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