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Abstract. In this paper I explore the connection between Schopenhauer’s Eu-
ler diagrams and the Aristotelian diagrams that are studied in contemporary
logical geometry. One can define the Aristotelian relations in a very general
fashion (relative to arbitrary Boolean algebras), which allows us to define
not only Aristotelian diagrams for statements, but also for sets. I show that,
once this generalization has been made, each of Schopenhauer’s concrete Eu-
ler diagrams can be transformed into a well-defined Aristotelian diagram.
More importantly, I also argue that Schopenhauer had several more general,
systematic insights about Euler diagrams, which anticipate general insights
and theorems about Aristotelian diagrams in logical geometry. Typical ex-
amples include the correspondence between n-partitions and α-structures (a
particular class of Aristotelian diagrams), and the fact that many families
of Aristotelian diagrams have distinct Boolean subtypes. Because of his vari-
ous concrete Euler diagrams and, especially, his more systematic observations
about them, Schopenhauer can rightly be considered a distant forerunner of
contemporary logical geometry.
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1. Introduction

Arthur Schopenhauer (1788–1860) is best known for his deeply pessimistic out-
look on the world, a world that he took to be cruel and filled with violence. By
emphasizing the fundamental irrationality and absurdity of the universe, he not
only anticipated much of 20th-century continental philosophy, but also influenced
major literary figures such as Samuel Beckett and Jorge Luis Borges [35]. Much
less known is that Schopenhauer was also concerned with what is perhaps the
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purest of all rational undertakings, viz. logic. There is a relatively brief discussion
of logic in the first of the four books of his magnum opus, The World as Will
and Representation [29], and a much more extensive treatment in a set of lecture
notes [28], which were meant for his university lectures in Berlin in the 1820s [21,
pp. 113–115].

Unsurprisingly, Schopenhauer holds logic in rather low esteem, since he deems
the discipline to be utterly useless for the purposes of daily life:

We no more need logic to avoid false reasoning than we need
its rules to help us reason correctly; and even the most learned
logician completely puts it aside when actually thinking. [29, p. 68]

Nevertheless, he does recognize the special epistemological status of logic, and
therefore concludes that it is worth studying after all:

Even though it has no practical use, logic must nevertheless be
preserved because of its philosophical interest as a special branch
of knowledge concerning the organization and action of reason
[. . . ] it is a self-contained, self-subsistent, internally complete and
perfect discipline that achieves absolute certainty. [29, pp. 69–70]

This double perspective on the discipline of logic (practically useless, but philo-
sophically valuable) is also manifested in his remarks on the origin and history of
logic [29, pp. 70–72].

In his discussion on logic, Schopenhauer makes extensive use of so-called
Euler diagrams to visually represent the relationship between concepts. He also
briefly touches upon the historical development of these diagrams:1

every concept has what may be termed an extension [Umfang ] or
sphere, even in cases where only a single real object corresponds
to it [. . . ] The idea of presenting these spheres by means of spatial
figures is very felicitous. It occurred first to Gottfried Ploucquet,
who used squares to do it; Lambert, who came after him, used
plain lines positioned under each other; but it was Euler who
perfected the idea by using circles. [29, p. 65]; also cf. [28, pp. 286–
287]

Schopenhauer takes Euler diagrams to be absolutely central to logic. They not
only facilitate the teaching of this discipline, but also capture its very essence, by
allowing one to derive all the logical inference rules (also cf. [21, pp. 115–118]):

This schematism of concepts, which is already explained quite well
in many textbooks, can be used to ground the doctrine of judge-
ment as well as the whole of syllogistic logic and makes it very
easy and uncomplicated to teach them both. [. . . ] The essence of
thought proper, i.e. of judgement and inference, can be presented
by combining conceptual spheres according to the spatial schema

1More detailed (and historically accurate) accounts of the history of Euler-type diagrams can be
found in [2, 3, 21, 22, 23].
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described above, and all the rules of judgement and inference can
be derived from this schema by construction. [29, pp. 68–70]

In this paper, I will explore the connection between Schopenhauer’s Euler
diagrams and another type of logical diagrams, viz. Aristotelian diagrams. Such
diagrams visualize the Aristotelian relations of contradiction, contrariety, etc. that
hold between a given number of propositions. The oldest and most well-known
example of an Aristotelian diagram is the so-called ‘square of opposition’ for the
categorical statements from syllogistics, but there are also many other (larger, more
complex) Aristotelian diagrams, often developed in very different logical systems
than traditional syllogistics. In contemporary logic, it has become clear that these
diagrams can be fruitfully studied as objects of independent mathematical and
philosophical interest, which has led to the burgeoning subfield of logical geometry
[6, 7, 11, 16, 32, 33].

As far as I know, Schopenhauer himself never drew a square of opposition, or
any other Aristotelian diagram — although he did explicitly discuss the opposition
relations that hold between the categorical statements [28, pp. 305ff.]. Nevertheless,
I will show in this paper that the particular Euler diagrams used by Schopenhauer
can be ‘translated’ or ‘transformed’ into particular Aristotelian diagrams. More
importantly, I will also argue that Schopenhauer formulated some more general
insights about entire ‘classes’ or ‘series’ of Euler diagrams, which again have di-
rect analogues in the realm of Aristotelian diagrams. Because of these systematic
observations regarding entire classes of logic diagrams, Schopenhauer can rightly
be considered a distant forerunner of contemporary logical geometry.

Before continuing, I should briefly say something about the scope of this
paper. My argumentation will primarily be based on the relatively small number
of Euler diagrams that appear in The World as Will and Representation [29].
There is also a plethora of Euler diagrams in Schopenhauer’s university lecture
notes [28], but for reasons of space, those diagrams will not be the main focus of
this paper. I will only draw upon material from the lecture notes insofar as it al-
lows me to further illustrate or reinforce a key claim in my overall argumentation.
Finally, I will not say anything in this paper about the very large and complex
‘Bonum/Malum diagram’ [29, p. 74]. Schopenhauer himself already indicates that
this diagram does not belong to logic proper, but rather to “the art of persua-
sion [Überredungskunst ]” [29, p. 72]. A more detailed discussion of this particular
diagram can be found in [24].

The paper is organized as follows. Section 2 provides some necessary back-
ground on logical geometry, focusing on a very general way of defining the Aris-
totelian relations, and a particular class of Aristotelian diagrams, viz. the so-called
α-structures. Section 3 shows how two of Schopenhauer’s simplest Euler diagrams
can be transformed into well-defined Aristotelian diagrams, viz. a classical and
a degenerate square of opposition. Section 4 deals with Schopenhauer’s infinite
series of Euler diagrams for partitions, and shows how it can be transformed into
an infinite series of strong α-structures. Section 5 is concerned with a final class
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of Euler diagrams, and shows how each of them can be transformed into both a
strong and a weak α-structure. Section 6 briefly summarizes the results that have
been obtained in this paper.

2. Some Background on Logical Geometry

This section provides some necessary background on logical geometry. In Subsec-
tion 2.1, I define the Aristotelian relations with respect to an arbitrary Boolean
algebra. This will later enable us to transform Schopenhauer’s Euler diagrams into
well-defined Aristotelian diagrams. Next, in Subsection 2.2, I introduce a particu-
lar class of Aristotelian diagrams, viz. the so-called α-structures, and discuss some
of their key properties. These α-structures will turn out to play a crucial role in
Sections 4 and 5.

2.1. Defining the Aristotelian Relations in a Boolean Algebra

The Aristotelian relations can be characterized with various degrees of abstract-
ness and generality [10, 12]. For the purposes of this paper, it will be useful to
consider a very general definition, in the mathematical setting of Boolean algebra
[17]; afterwards, I will show how the more well-known characterizations of the
Aristotelian relations can be obtained as special cases of this definition.

Definition 2.1. Let B = 〈B,∧,∨,¬,>,⊥〉 be an arbitrary Boolean algebra. Two
elements x, y ∈ B are said to be

B-contradictory iff x ∧ y = ⊥ and x ∨ y = >,
B-contrary iff x ∧ y = ⊥ and x ∨ y 6= >,
B-subcontrary iff x ∧ y 6= ⊥ and x ∨ y = >,
in B-subalternation iff ¬x ∨ y = > and x ∨ ¬y 6= >.

Note that by De Morgan’s laws, the condition x∨y = > is equivalent to ¬x∧¬y =
⊥, while the conditions ¬x∨y = > and x∨¬y 6= > are equivalent to resp. x∧¬y =
⊥ and ¬x ∧ y 6= ⊥. This means that the relations of contradiction, contrariety
and subcontrariety are all defined in terms of the ‘symmetrical’ elements x ∧ y
and ¬x ∧ ¬y, whereas the relation of subalternation is defined in terms of the
‘asymmetrical’ elements ¬x∧y and x∧¬y. This conceptual split in the definitions
of the Aristotelian relations is explored in much more detail in [31].

Definition 2.1 provides a characterization of the Aristotelian relations in an
arbitrary Boolean algebra. However, it is also important to have a clear grasp of
what it means for two elements not to stand in any Aristotelian relation whatso-
ever. This corresponds to the notion of unconnectedness [15, 31], which is defined
in terms of four conditions:

Definition 2.2. Let B = 〈B,∧,∨,¬,>,⊥〉 again be an arbitrary Boolean algebra.
Two elements x, y ∈ B are said to be B-unconnected iff (i) x ∧ y 6= ⊥ and (ii) x ∧
¬y 6= ⊥ and (iii) ¬x ∧ y 6= ⊥ and (iv) ¬x ∧ ¬y 6= ⊥.
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The first condition of Definition 2.2 implies that x and y are neither B-contradictory
nor B-contrary, while the fourth condition implies that x and y are neither B-
contradictory nor B-subcontrary. The second condition implies that there is no
B-subalternation from x to y, and similarly, the third condition implies that there
is no B-subalternation from y to x. Together, these four conditions thus imply that
the elements x, y ∈ B do not stand in any Aristotelian relation in the Boolean al-
gebra B.

We can move from these very general definitions to more well-known char-
acterizations of the Aristotelian relations and unconnectedness, by plugging in a
concrete Boolean algebra for B. I will now discuss two key examples: (i) letting
B be a Boolean algebra of statements, and (ii) letting B be a Boolean algebra of
sets.2

First of all, consider the case where B is a Boolean algebra of statements.
(This can typically be achieved by taking B to be the Lindenbaum-Tarski alge-
bra of some suitable logical system S.3) The top and bottom elements of such a
Boolean algebra are resp. the tautological and self-contradictory statements, while
the algebraic operations of meet, join and complement correspond to the logical
operations of conjunction, disjunction and negation. By applying Definition 2.1,
we find that two statements P and Q are contrary in this Boolean algebra iff
P ∧Q = ⊥ and P ∨Q 6= >, i.e. iff the conjunction of P and Q is self-contradictory,
while the disjunction of P and Q is not tautological. The first part means exactly
that P and Q cannot be true together, while the second part means that P and Q
can be false together. We have thus obtained the ‘familiar’ definition of contrariety
for statements (in terms of being able to be true/false together) as a special case of
Definition 2.1. The familiar definitions of contradiction, subcontrariety, subalter-
nation and unconnectedness for statements can be obtained from Definitions 2.1
and 2.2 in a completely analogous fashion.

Secondly, consider the case where B is a Boolean algebra of sets. (Because
of the Stone representation theorem, every Boolean algebra is isomorphic to a
Boolean algebra of this kind [17].) The top and bottom elements of such a Boolean
algebra are resp. some domain of discourse D and the empty set ∅, while the
algebraic operations of meet, join and complement correspond to the set-theoretical
operations of intersection, union and complementation (with respect to D). By
applying Definition 2.1, we find that two sets X and Y are contrary in this Boolean
algebra iff X ∩Y = ∅ and X ∪Y 6= D, i.e. iff the intersection of X and Y is empty,

2The close relationship between these two examples was already noted by Keynes, who wrote:

“These seven possible relations between propositions (taken in pairs) will be found to be pre-
cisely analogous to the seven possible relations between classes (taken in pairs)” [19, p. 119, my

emphases]. Note that Keynes talks about seven relations, because in addition to the four Aris-

totelian relations and unconnectedness, he is considering two others. However, this difference is
irrelevant for our current purposes.
3‘Suitable’ here means that the logical system S has all the connectives and axioms that are

needed to guarantee that its Lindenbaum-Tarski algebra effectively is a Boolean algebra. This is
mainly a technical caveat, and it is further irrelevant for the purposes of this paper.
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while the union of X and Y does not exhaust the domain of discourse D. The
definitions of contradiction, subcontrariety, subalternation and unconnectedness
for sets can be obtained from Definitions 2.1 and 2.2 in a completely analogous
fashion. For future reference, all these definitions are listed below:

Definition 2.3. Let B = 〈B,∩,∪, \, D, ∅〉 be a Boolean algebra of sets. Two sets
X,Y ∈ B are said to be

B-contradictory iff X ∩ Y = ∅ and X ∪ Y = D,
B-contrary iff X ∩ Y = ∅ and X ∪ Y 6= D,
B-subcontrary iff X ∩ Y 6= ∅ and X ∪ Y = D,
in B-subalternation iff (D\X) ∪ Y = D and X ∪ (D\Y ) 6= D,
B-unconnected iff X ∩ Y 6= ∅ and X ∩ (D\Y ) 6= ∅

and (D\X) ∩ Y 6= ∅ and (D\X) ∩ (D\Y ) 6= ∅.

Note that the conditions (D\X) ∪ Y = D and X ∪ (D\Y ) 6= D are equivalent
to resp. X ⊆ Y and X 6⊇ Y . In a Boolean algebra of sets, subalternation thus
corresponds to the proper subset-relation: there is a subalternation from X to Y
iff X ⊂ Y .

Because of the generality of Definitions 2.1 and 2.2, we are now able to deal
with Aristotelian relations not only in the case of statements, but also in the case
of sets. This insight will be absolutely crucial when we transform Schopenhauer’s
Euler diagrams into Aristotelian diagrams, because those Euler diagrams also rep-
resent relations between sets. More specifically, Schopenhauer’s Euler diagrams
represent relations between spheres/extensions of concepts (cf. the quotation pro-
vided in Section 1), and these extensions are indeed sets. For example, the ex-
tension of the concept Horse is the set of all concrete horses that exist in the
world.

2.2. The α-Structures and their Properties

Now that the Aristotelian relations and unconnectedness have been defined relative
to arbitrary Boolean algebras, we can likewise define the notion of an Aristotelian
diagram:

Definition 2.4. Let B = 〈B,∧,∨,¬,>,⊥〉 be an arbitrary Boolean algebra and con-
sider a fragment F ⊆ B\{>,⊥}. Suppose that F is closed under B-complementation,
i.e. if x ∈ F then ¬x ∈ F . An Aristotelian diagram for F in B is a diagram that
visualizes an edge-labeled graph G. The vertices of G are the elements of F , and
the edges of G are labeled by the Aristotelian relations holding in B between those
elements, i.e. if x, y ∈ F stand in some Aristotelian relation in B, then this is
visualized according to the code in Fig. 1(a).

Note that by definition, the set F of elements appearing in an Aristotelian di-
agram is closed under complementation and only contains non-trivial elements
(i.e. neither > nor ⊥). There are various historical and systematic reasons for
these restrictions [31, Subsection 2.1], which need not concern us here. Later on in
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Figure 1. (a) code for visually representing the Aristotelian re-
lations; examples of (b) PCD, (c) classical square of opposition,
(d) JSB hexagon, (e) Moretti octagon.

this paper, we will focus on a particular subclass of Aristotelian diagrams, viz. the
so-called α-structures (the term ‘α-structure’ is due to Moretti [25]):

Definition 2.5. Let B again be a Boolean algebra, and let n ≥ 1 be a nat-
ural number. An αn-structure in B is an Aristotelian diagram for a fragment
{x1, . . . , xn,¬x1, . . . ,¬xn} ⊆ B\{>,⊥}, where all distinct xi, xj are supposed to
be pairwise B-contrary, i.e. such that xi and xj are B-contrary for all 1 ≤ i 6= j ≤ n.

The condition of pairwise B-contrariety between all distinct xi, xj immediately
implies that there are several other Aristotelian relations in an αn-structure as
well. In particular, it follows that ¬xi and ¬xj are B-subcontrary and that there
are B-subalternations from xi to ¬xj , for all 1 ≤ i 6= j ≤ n. Furthermore, as
in any Aristotelian diagram, it holds that xi and ¬xi are B-contradictory, for all
1 ≤ i ≤ n.

Although there certainly exist Aristotelian diagrams that do not belong to
the class of α-structures, this particular class does contain some of the most well-
known examples of Aristotelian diagrams. For example, consider the four smallest
members of this class, i.e. the αn-structures for n ∈ {1, 2, 3, 4}:



8 Lorenz Demey

• The α1-structure is simply a pair of contradictory elements (PCD).4 An ex-
ample is shown in Fig. 1(b). Because Aristotelian diagrams are supposed to
be closed under complementation, this is the smallest possible Aristotelian
diagram. PCDs do not frequently appear in the literature, but they have
considerable theoretical importance, since they can be thought of as the fun-
damental ‘building blocks’ for all other, larger Aristotelian diagrams [13, 14].

• The α2-structure is a classical square of opposition. An example is shown in
Fig. 1(c). Without a doubt, this is the oldest, most well-known and most
frequently-used type of Aristotelian diagram.

• The α3-structure is a so-called Jacoby-Sesmat-Blanché hexagon (JSB hexagon),
which is named after Jacoby [18], Sesmat [30] and Blanché [5]. An example is
shown in Fig. 1(d). After the classical square of opposition, this is probably
the most well-known and most frequently-used type of Aristotelian diagram.
Within a JSB hexagon, one can discern a triangle of contraries that interlocks
with a triangle of subcontraries.

• The α4-structure is a so-called Moretti octagon, which is named after Moretti
[25] (who drew it as a cube, rather than an octagon). An example is shown
in Fig. 1(e). Within a Moretti octagon, one can discern a trapezoid of con-
traries and a trapezoid of subcontraries. (If this diagram is drawn as a cube
instead of an octagon, then these two trapezoids correspond to a tetrahedron
of contraries that interlocks with a tetrahedron of subcontraries. Such a tetra-
hedron of contraries was already known (and drawn) by Charles S. Peirce;
cf. [1, p. 60] and [20, p. 569].)

One of the main theoretical insights of logical geometry is that a given fam-
ily of Aristotelian diagrams can have multiple Boolean subtypes, i.e. it is perfectly
possible for two Aristotelian diagrams to exhibit exactly the same configuration
of Aristotelian relations among their respective sets of elements, and yet have
completely different Boolean properties [8, 15]. The first concrete example of this
phenomenon was pointed out by Pellissier [26], and concerns the JSB hexagons.
One can show that there are two Boolean subtypes of JSB hexagons, with com-
pletely different Boolean properties: in a strong JSB hexagon, the join of the 3
contrary elements equals >, whereas in a weak JSB hexagon, the join of the 3 con-
trary elements is not equal to >. These kinds of (differences in) Boolean properties
are nowadays usually characterized in terms of bitstring length, i.e. the smallest
number of bits with which a given diagram can be encoded. For example, a strong
JSB hexagon can be encoded by bitstrings of length 3 (its 3 contrary elements
are then encoded as 100, 010 and 001, so that 100 ∨ 010 ∨ 001 = 111), whereas
a weak JSB hexagon requires bitstrings of length 4 (its 3 contrary elements are

4Note that an α1-structure does not contain any distinct xi, xj , and hence, no contrarieties

either. Since the pairwise contrarieties among distinct xi, xj constitute the characteristic feature

of the α-structures (cf. Definition 2.5), the α1-structure is clearly seen to be a ‘limiting’ (or
‘degenerate’) case of the α-structures in general.
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then encoded as 1000, 0100 and 0010, so that 1000 ∨ 0100 ∨ 0010 = 1110 6= 1111)
[15, 34].5

We are now in a position to systematically examine the Boolean subtypes
of the various α-structures. Theorem 2.6 below summarizes the situation. For
reasons of space, this theorem will not be proved in this paper, but it is based on
a straightforward application of bitstring analysis. Note that the important cutoff
happens at n = 3. This is not a coincidence: because of their binary nature, the
Aristotelian relations cannot capture the full Boolean complexity that may arise
in larger sets [9].6

Theorem 2.6.

1. The family of α1-structures is Boolean homogeneous, i.e. it has just a single
Boolean subtype, which requires bitstrings of length 2.

2. The family of α2-structures is Boolean homogeneous, i.e. it has just a single
Boolean subtype, which requires bitstrings of length 3.

3. For n ≥ 3, the family of αn-structures has two Boolean subtypes: (i) a strong
subtype, which requires bitstrings of length n, and (ii) a weak subtype, which
requires bitstrings of length n+ 1.

The cases n = 1 and n = 2 of this theorem mean that the family of PCDs and
the family of classical squares of opposition are both Boolean homogeneous, which
is well-known in logical geometry. The case n = 3 means that the family of JSB
hexagons has two Boolean subtypes, viz. the strong JSB hexagons (which require
bitstrings of length 3) and the weak JSB hexagons (which require bitstrings of
length 4). We have already seen that this was first pointed out by Pellissier [26].
For a final example, note that the case n = 4 means that the family of Moretti oc-
tagons has two Boolean subtypes, viz. the strong Moretti octagons (which require
bitstrings of length 4) and the weak Moretti octagons (which require bitstrings of
length 5). A concrete example of a strong Moretti octagon can be found in Moretti
[25] (drawn as a cube), while a weak Moretti octagon can be found in Reichenbach
[27] (again drawn as a cube).

In a Boolean algebra B = 〈B,∧,∨,¬,>,⊥〉, a finite set Π = {x1, . . . , xn} ⊆
B\{>,⊥} (with n ≥ 2) is said to be an n-partition of B iff (i) xi ∧ xj = ⊥ for all
distinct xi, xj ∈ Π and (ii)

∨
Π = >. There is a clear correspondence between par-

titions and (strong) α-structures. This is made fully precise in Theorem 2.7 below.
Note that there is again a cutoff at n = 3, and that α2-structures (i.e. classical
squares of opposition) do not correspond to any partitions.

Theorem 2.7.

5There also exist Aristotelian families that have more than two Boolean subtypes. For example,
the family of Buridan octagons has three Boolean subtypes: one that requires bitstrings of length

4, one that requires bitstrings of length 5, and one that requires bitstrings of length 6 [8, 15].
6For an easy illustration from classical propositional logic, note that the 3-element set {p ∨
q,¬p,¬q} is inconsistent, while each of its 2-element subsets is consistent.
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1. Each 2-partition {x,¬x} gives rise to an α1-structure with elements {x,¬x},
and a contradiction holding between x and ¬x.

2. For n ≥ 3, each 3-partition {x1, . . . , xn} gives rise to a strong αn-structure
with elements {x1, . . . , xn,¬x1, . . . ,¬xn}, with contradictions between xi and
¬xi, and contrarieties between xi and xj, for all 1 ≤ i 6= j ≤ n.

The case n = 2 of this theorem means that each 2-partition corresponds to a PCD.
The case n = 3 means that each 3-partition corresponds to a strong JSB hexagon,
which has the 3 elements of the partition on its triangle of contraries. The case
n = 4 means that each 4-partition corresponds to a strong Moretti octagon, which
has the 4 elements of the partition on its trapezoid of contraries.

3. Two Basic Examples

After this brief overview of logical geometry, we are now ready to turn to Schopen-
hauer. In this section I will show how two of Schopenhauer’s simplest Euler di-
agrams can be transformed into well-defined Aristotelian diagrams. This will be
a valuable exercise in itself, but it will also serve as a useful preparation for the
more involved transformations of Euler diagrams into Aristotelian diagrams that
will be discussed in Sections 4 and 5.

3.1. From an Euler Diagram to a Classical Square of Opposition

Schopenhauer begins his discussion of Euler diagrams by mentioning the most
basic case, viz. that of two concepts that completely coincide with each other. (The
example he gives involves the concepts of Ruminantia and Bisulca, i.e. ruminants
and animals with cloven hoofs.) He does not explicitly provide an Euler diagram
for this situation, stating that “Such cases may be presented using a single circle
that signifies the one as much as the other” [29, p. 66].

Next, Schopenhauer turns to the case where “The sphere of one concept com-
pletely encloses the sphere of another.” [29, p. 66]. The example he gives involves
the concepts of Horse and Animal; the accompanying Euler diagram is shown in
Fig. 2(a). This diagram clearly shows that (the extension/sphere of) Horse is a
proper subset of (the extension/sphere of) Animal.7 We have already seen in Sub-
section 2.1 that this proper subset-relation essentially amounts to a subalternation
from Horse to Animal, in some underlying Boolean algebra of sets. The smallest
Boolean algebra of sets that non-trivially8 contains Horse and Animal has 23 = 8

7One might object that Schopenhauer’s words (“completely enclose”) commit him to Horse

being a subset of Animal, but not necessarily a proper subset. This objection is misguided,
for the following two reasons. First of all, the Euler diagram used by Schopenhauer contains a

significant amount of space for the part Animal\Horse, which is a clear visual suggestion that

Horse is a proper subset of Animal. Secondly, if the inclusion were non-proper, then it would be
possible that Horse and Animal are exactly the same concept, so that they should have been

represented by just a single circle instead (cf. the first case discussed by Schopenhauer).
8I.e. in such a way that neither Horse nor Animal end up being the top or bottom element of
the Boolean algebra. See Remark 3.3 for a more detailed discussion.



From Schopenhauer to Logical Geometry 11

Figure 2. (a) Schopenhauer’s Euler diagram; (b) the corre-
sponding Aristotelian diagram: a classical square of opposition.

elements. This Boolean algebra, B3, has top element D (for Domain), bottom el-
ement ∅, and three atomic elements, viz. Horse, Animal\Horse and D\Animal.
The Hasse diagram for B3 is shown in Fig. 3(a); note that B3 is isomorphic to the
powerset algebra ℘({1, 2, 3}).

We can now determine the Aristotelian relations holding between some of the
sets of this Boolean algebra B3 (recall Definition 2.3). We have already seen that
Horse ⊂ Animal, which means exactly that there is a B3-subalternation from Horse
to Animal. Furthermore, since Horse∩(D\Horse) = ∅ and Horse∪(D\Horse) = D,
it follows that Horse and D\Horse are B3-contradictories; similarly, Animal and
D\Animal are also B3-contradictories. Furthermore, since Horse∩(D\Animal) = ∅
and Horse ∪ (D\Animal) 6= D, it follows that Horse and D\Animal are B3-
contraries. Completely analogously, one can show that Animal and D\Horse are
B3-subcontraries, and that there is a B3-subalternation fromD\Animal toD\Horse.
All these Aristotelian relations can be summarized by means of a classical square
of opposition, as shown in Fig. 2(b).

We have thus succeeded in transforming Schopenhauer’s original Euler dia-
gram (Fig. 2(a)) into an Aristotelian diagram, viz. a classical square of opposition
(Fig. 2(b)). It bears emphasizing that the Aristotelian relations that are visualized
by this square are all mathematically well-defined: they hold relative to the under-
lying Boolean algebra B3 (cf. Fig. 3(a)), and are thus specific instantiations of the
general characterization of the Aristotelian relations provided by Definition 2.1.
To finish this subsection, I will now make three remarks, in increasing order of
importance.

Remark 3.1. The transformation process that has just been described is by no
means an injection, i.e. it is perfectly possible for two distinct Euler diagrams to
be transformed into one and the same Aristotelian diagram. For example, we have
just seen how the Euler diagram for the proper inclusion of Horse in Animal is
transformed into a classical square of opposition. It is easy to see how another Euler
diagram, which visualizes the proper inclusion of D\Animal in D\Horse, would be
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Figure 3. Hasse diagram for (a) the Boolean algebra B3 and (b)
the Boolean algebra B2.

transformed into exactly the same classical square. Alternatively, one can view the
original Euler diagram in Fig. 2(a) as a visual representation of both proper inclu-
sion relations — albeit, perhaps, with different degrees of visual perspicuity. More
generally, from this alternative perspective, the single Euler diagram in Fig. 2(a)
at once visualizes six relations among Horse, Animal, D\Horse and D\Animal, all
six of which are also visualized by the classical square of opposition in Fig. 2(b).

Remark 3.2. Let’s reiterate once more that the elements visualized by the square
in Fig. 2(b) are not statements, but sets (more specifically: extensions of con-
cepts). After all, the original Euler diagram in Fig. 2(a) also visualizes a relation
(viz. proper inclusion) between two sets. Note, however, that this Euler diagram
can also be seen as a visual representation of the categorical A-statement ‘all horses
are animals’.9 One can then consider the corresponding I-, E- and O-statements,
i.e. ‘some horses are animals’, ‘no horses are animals’ and ‘some horses aren’t an-
imals’. Together, these four categorical statements yield another classical square
of opposition. However, this second square is very different from the one shown in
Fig. 2(b): the square in Fig. 2(b) is a diagram for sets and Aristotelian relations
between sets (e.g. having empty or non-empty intersection), whereas the second
square just described would be a diagram for statements and Aristotelian relations
between statements (e.g. being able or not being able to be true together).

Remark 3.3. Recall that B3 is the smallest Boolean algebra of sets that non-
trivially contains Horse and Animal. This non-triviality condition means that nei-
ther Horse nor Animal are identical to D or ∅, i.e. to the top or bottom element of
B3 (cf. the Hasse diagram in Fig. 3). Without this non-triviality condition, there
is a smaller Boolean algebra of sets that contains Horse and Animal. This smaller

9Schopenhauer himself also took this view [28, p. 290].
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Figure 4. (a) Schopenhauer’s Euler diagram; (b) the corre-
sponding Aristotelian diagram: a degenerate square.

Boolean algebra, B2, has 22 = 4 elements; its top element is Animal and its bottom
element is ∅; its two remaining elements are Horse and Animal\Horse. The Hasse
diagram for B2 is shown in Fig. 3(b); note that B2 is isomorphic to the powerset
algebra ℘({1, 2}). The Boolean algebra of sets B2 contains Horse and Animal, but
Animal ends up being identical to the top element of B2. Consequently, next to the
‘expected’ results, B2 also yields some very counter-intuitive results; for example,
there is a B2-subalternation from Horse to Animal (because Horse ⊂ Animal), but
additionally, there is also a B2-subcontrariety between Horse and Animal (because
Horse ∩ Animal 6= ∅ and Horse ∪ Animal = Animal). Furthermore, B2 does not
contain enough elements to construct a square of opposition (recall that by def-
inition, Aristotelian diagrams cannot contain a Boolean algebra’s top or bottom
elements). These issues illustrate the importance of respecting the non-triviality
condition when transforming a given Euler diagram into an Aristotelian diagram.

3.2. From an Euler Diagram to a Degenerate Square of Opposition

Another of Schopenhauer’s Euler diagrams illustrates the case where “Two spheres
each include a part of the other.” [29, p. 67]. The example he gives involves the con-
cepts of Flower and Red; the accompanying Euler diagram is shown in Fig. 4(a).
The smallest Boolean algebra of sets that non-trivially (recall Remark 3.3) contains
Flower and Red has 24 = 16 elements. This Boolean algebra, B4, has top element
D (for Domain), bottom element ∅, and four atomic elements, viz. Flower ∩ Red,
Flower ∩ (D\Red), (D\Flower) ∩ Red and (D\Flower) ∩ (D\Red). The Hasse di-
agram for B4 is shown in Fig. 5; note that B4 isomorphic to the powerset algebra
℘({1, 2, 3, 4}).

We can now determine the Aristotelian relations holding between some of
the sets of this Boolean algebra B4 (again, recall Definition 2.3). First of all, since
Flower ∩ (D\Flower) = ∅ and Flower ∪ (D\Flower) = D, it follows that Flower
and D\Flower are B4-contradictories; similarly, Red and D\Red are also B4-
contradictories. Furthermore, since (i) Flower∩Red 6= ∅, (ii) Flower∩(D\Red) 6= ∅,
(iii) (D\Flower) ∩ Red 6= ∅ and (iv) (D\Flower) ∩ (D\Red) 6= ∅, it follows that
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Figure 5. Hasse diagram for the Boolean algebra B4. Note
that ∆ denotes the symmetrical difference between two sets,
i.e. X∆Y := (X ∩ (D\Y )) ∪ ((D\X) ∩ Y ).

Flower and Red are B4-unconnected, i.e. these two sets do not stand in any Aris-
totelian relation whatsoever in B4.10 Completely analogously, one can show that
Flower and D\Red are B4-unconnected, D\Flower and Red are B4-unconnected,
and D\Flower and D\Red are B4-unconnected. This can all be summarized by
means of a ‘degenerate’ square of opposition (or ‘X of opposition’ [4, pp. 11–12]),
as shown in Fig. 4(b).

We have thus succeeded in transforming Schopenhauer’s original Euler dia-
gram (Fig. 4(a)) into an Aristotelian diagram, viz. a degenerate square of opposi-
tion (Fig. 4(b)). Once again, it bears emphasizing that the Aristotelian relations
(or rather: lack thereof, in the four cases of unconnectedness) that are visualized
by this square are all mathematically well-defined: they hold relative to the un-
derlying Boolean algebra B4 (cf. Fig. 5), and are thus specific instantiations of
the general characterizations of the Aristotelian relations and unconnectedness
provided by Definitions 2.1 and 2.2.

Remarks 3.1 – 3.3 from the previous subsection continue to apply in the
present situation. For example, we once again observe the non-injective nature of

10The Euler diagram in Fig. 4(a) can be seen as a visual representation of the statement ‘some
flowers are red’, as acknowledged by Schopenhauer [28, p. 294]. This means exactly that Flower∩
Red 6= ∅; cf. condition (i) above. However, Schopenhauer explicitly indicates that this same Euler

diagram also represents the statements ‘some flowers are not red’ and ‘some red things are not
flowers’ [28, p. 294], i.e. Flower∩ (D\Red) 6= ∅ and (D\Flower)∩Red 6= ∅; cf. conditions (ii) and

(iii) above. As far as I know, Schopenhauer never explicitly discussed the interpretation ‘some
non-red things are not flowers’ of this same Euler diagram, which corresponds to condition (iv)
above.
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the transformation process from Euler diagrams to Aristotelian diagrams. In par-
ticular, note that the Euler diagram in Fig. 4(a), which visualizes that Flower ∩
Red 6= ∅, has been transformed into the degenerate square of opposition in Fig. 4(b),
but that another Euler diagram, for example one which visualizes that (D\Flower)∩
(D\Red) 6= ∅, would be transformed into exactly the same degenerate square. Al-
ternatively, one can again view the single Euler diagram in Fig. 4(a) as a visual
representation of six relations (or rather: lack thereof, in the four cases of uncon-
nectedness) among Flower, Red, D\Flower and D\Red, all six of which are also
visualized by the degenerate square in Fig. 4(b). Also note that the Euler diagram
in Fig. 4(a) can be viewed as a visual representation of the categorical I-statement
‘some flowers are red’ (cf. Footnote 10). One can then consider the corresponding
A-, E- and O-statements, i.e. ‘all flowers are red’, ‘no flowers are red’ and ‘some
flowers are not red’. Together, these four categorical statements yield a classical
square of opposition. The difference between these two squares is now even clearer
than in Subsection 3.1: the diagram in Fig. 4(b) is a degenerate square of oppo-
sition for sets, whereas the second diagram just described would be a classical
square for statements.

To conclude this section, let’s summarize the results that have been obtained.
It is well-known in contemporary logical geometry that there are exactly two types
of Aristotelian squares, viz. classical squares and degenerate squares. In Subsec-
tion 3.1 we have seen that one of Schopenhauer’s Euler diagrams can be trans-
formed into a classical square, and in Subsection 3.2 we have seen that another
one of his diagrams can be transformed into a degenerate square. In other words,
Schopenhauer’s stock of Euler diagrams is sufficiently rich so as to contain ana-
logues of each of the two types of Aristotelian squares that are nowadays studied
in logical geometry.

4. Partitions, Euler Diagrams and Aristotelian Diagrams

In this section we will deal with yet another Euler diagram that was used by
Schopenhauer — or rather, an entire class of Euler diagrams. These diagrams
illustrate the case where “A sphere includes two or more further spheres, which
are mutually exclusive and at the same time exhaust the first sphere” [29, p. 66].
The example he gives involves the concepts of Acute Angle, Right Angle and
Obtuse Angle; the accompanying Euler diagram is shown in Fig. 6(a). The smallest
Boolean algebra of sets that non-trivially contains Acute Angle, Right Angle and
Obtuse Angle has 23 = 8 elements. This Boolean algebra, which we will again
label B3, has top element An (for Angle),11 bottom element ∅, and three atomic
elements, viz. A (for Acute Angle), R (for Right Angle) and O (for Obtuse Angle).

11Since Acute Angle, Right Angle and Obtuse Angle are meant to “exhaust the first sphere”,
this first sphere has to be interpreted as a ‘restricted domain of discourse’, i.e. Angle. Of course,

there also exist objects that are not angles (e.g. flowers and horses), but if these were also taken
into account, then Acute Angle, Right Angle and Obtuse Angle would not exhaust the domain
of discourse.
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Figure 6. (a) Schopenhauer’s Euler diagram; (b) the corre-
sponding Aristotelian diagram: a strong JSB hexagon.

We can now determine the Aristotelian relations holding between some of the
sets of this Boolean algebra B3 (recall Definition 2.3). Since Acute Angle, Right
Angle and Obtuse Angle are mutually exclusive, we have A ∩ R = ∅, A ∩ O = ∅
and R ∩O = ∅. Furthermore, since neither of these three concepts’ extensions are
empty, it follows that resp. R ∪ O 6= An, A ∪ O 6= An and A ∪ R 6= An. We thus
find that there are pairwise B3-contrarieties between each of A, R and O. These
three sets thus constitute a triangle of contraries in B3. Completely analogously,
one can show that, for all distinct X,Y ∈ {A,R,O}, there are B3-contradictions
between X and An\X, as well as B3-subcontrarieties between An\X and An\Y
and B3-subalternations from X to An\Y . All these Aristotelian relations can be
summarized by means of a JSB hexagon, as shown in Fig. 6(b).

Schopenhauer’s remark that Acute Angle, Right Angle and Obtuse Angle are
mutually exclusive thus essentially means that his Euler diagram for these three
concepts can be transformed into a well-defined Aristotelian diagram, viz. a JSB
hexagon. However, Schopenhauer also notes that these three spheres are jointly ex-
haustive, i.e. A∪R∪O = An. This information goes beyond the Aristotelian rela-
tions,12 and provides additional Boolean information. This additional information
determines the Boolean subtype of the Aristotelian diagram under consideration:
the hexagon in Fig. 6(b) is a strong JSB hexagon.

The Euler diagram in Fig. 6(a) has thus been transformed into the strong JSB
hexagon in Fig. 6(b). This should not come as a surprise. After all, Schopenhauer’s
remarks that Acute Angle, Right Angle and Obtuse Angle are mutually exclusive
and jointly exhaustive mean that the set Π := {A,R,O} is a 3-partition of B3.
By Theorem 2.7 (item 2), this 3-partition gives rise to a strong α3-structure, i.e. a
strong JSB hexagon, which has the three elements of Π on its triangle of contraries.
This JSB hexagon is exactly the diagram shown in Fig. 6(b).

12Again, note that the Aristotelian relations are binary in nature, and thus cannot capture the
information that A ∪R ∪O = An.
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Figure 7. (a) Schopenhauer’s Euler diagram; (b) Hasse diagram
for the Boolean algebra B2; (c) the corresponding Aristotelian
diagram: a PCD.

Although the example involving Acute/Right/Obtuse Angle is the only one
that is explicitly given by Schopenhauer in [29], his theoretical discussion is much
more general than this. Recall his description: “A sphere includes two or more
further spheres, which are mutually exclusive and at the same time exhaust the first
sphere” [29, p. 66, my emphasis]. The number of (mutually exclusive and jointly
exhaustive) spheres that are included in the first sphere is thus left unspecified.
The concrete Acute/Right/Obtuse Angle example is based on three spheres, but
Schopenhauer could equally easily have given examples based on two spheres, four
spheres, etc.

In his university lecture notes [28, p. 296], Schopenhauer explicitly provides an
example of a sphere that includes two further spheres which are mutually exclusive
and jointly exhaustive. His example involves the concepts of Organic and Inorganic
(both included in Body [Körper ]); the accompanying Euler diagram is shown in
Fig. 7(a). The smallest Boolean algebra that non-trivially contains Organic and
Inorganic has 4 elements. This Boolean algebra, which we will again label B2,
has top element Body, bottom element ∅, and two atomic elements, viz. Organic
and Anorganic. The Hasse diagram for B2 is shown in Fig. 7(b). Since Organic
∩ Anorgnic = ∅ and Organic ∪ Anorganic = Body, it follows that Organic and
Anorganic are B2-contradictory. Schopenhauer’s Euler diagram in Fig. 7(a) can
thus be transformed into the (very simple) Aristotelian diagram in Fig. 7(c). This
Aristotelian diagram is a PCD. Again, this should not come as a surprise. After
all, Schopenhauer’s remarks that Organic and Anorganic are mutually exclusive
and jointly exhaustive mean that the set {Organic,Anorganic} is a 2-partition of
B2. By Theorem 2.7 (item 1), this 2-partition gives rise to an α1-structure, i.e. a
PCD. This PCD is exactly the diagram shown in Fig. 7(c).

As far as I know, Schopenhauer nowhere discussed an example of a sphere that
includes four further spheres which are mutually exclusive and jointly exhaustive.
However, one can easily construct such an example, cf. the Euler diagram shown
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Figure 8. (a) Schopenhauer-inspired Euler diagram; (b) the cor-
responding Aristotelian diagram: a strong Moretti octagon.

in Fig. 8(a). The smallest Boolean algebra of sets that contains A, B, C and D
will again be called B4. This Boolean algebra has 16 elements in total, including
top element U (for Universe), bottom element ∅, and four atomic elements, viz. A,
B, C and D. One can easily determine the Aristotelian relations that hold among
A, B, C, D and their complements in B4. This yields a Moretti octagon, as shown
in Fig. 8(b). Furthermore, since A, B, C and D are jointly exhaustive (i.e. A∪B∪
C ∪ D = U), the diagram in Fig. 8(b) is a strong Moretti octagon. Once again,
this should not come as a surprise. After all, the fact that A, B, C and D are
mutually exclusive and jointly exhaustive means that the set Π := {A,B,C,D} is
a 4-partition of B4. By Theorem 2.7 (item 2), this 4-partition gives rise to a strong
α4-structure, i.e. a strong Moretti octagon, which has the four elements of Π on its
trapezoid of contraries. This strong Moretti octagon is exactly the diagram shown
in Fig. 8(b).

I will again finish this section by summarizing the results that have been
obtained. It is well-known in contemporary logical geometry that there is a precise
correspondence between partitions and α-structures (cf. Theorem 2.7). We have
seen that Schopenhauer explicitly discussed Euler diagrams where a given sphere
contains two or more spheres that are mutually exclusive and jointly exhaustive
— i.e. that constitute a partition of the first sphere. His concrete example of a
2-partition [28, p. 296] can be transformed into a PCD, i.e. an α1-structure, which
is in line with item 1 of Theorem 2.7. His concrete example of a 3-partition [29,
p. 66] can be transformed into a strong JSB hexagon, i.e. a strong α3-structure,
which is in line with item 2 of Theorem 2.7. For the sake of illustration, I have also
discussed an example of a 4-partition, showing that it can be transformed into a
strong Moretti octagon, i.e. a strong α4-structure, which is again in line with item
2 of Theorem 2.7. Furthermore, since Schopenhauer left the number of mutually
exclusive and jointly exhaustive spheres that are included in the first sphere un-
specified, he was implicitly considering an infinite series of Euler diagrams (for
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each n ≥ 2, there is a distinct Euler diagram corresponding to an n-partition).
Each Euler diagram in this series can be transformed into a distinct Aristotelian
diagram, viz. an α-structure (from n = 3 onwards, this αn-structure is a strong
one). In other words, by leaving the number of cells in the partition unspecified,
Schopenhauer essentially anticipated the entire infinite series of α-structures from
contemporary logical geometry.

5. Boolean Subtypes of Aristotelian Diagrams

In this section we consider a final class of Euler diagrams discussed by Schopen-
hauer. These diagrams illustrate the case where “Two spheres lie inside a third,
but do not exhaust it” [29, p. 67]. The example he gives involves the concepts of
Water and Earth, both of which lie inside Matter. The accompanying Euler dia-
gram is shown in Fig. 9(a). The smallest Boolean algebra of sets that non-trivially
contains Water and Earth has 23 = 8 elements. This Boolean algebra, which we
will again label B3, has top element M (for Matter), bottom element ∅, and three
atomic elements, viz. W (for Water), E (for Earth) and M\(W ∪ E).13

We can now determine the Aristotelian relations holding between some of the
sets of this Boolean algebra B3 (recall Definition 2.3). Since Water and Earth are
mutually exclusive, we have W ∩ E = ∅.14 Furthermore, since Water and Earth
do not exhaust Matter, we have W ∪ E 6= M . This means that W and E are B3-
contrary. Completely analogously, one can show that there are B3-contradictions
between W and M\W and between E and M\E, as well as B3-subalternations
from W to M\E and from E to M\W , and finally, a B3-subcontrariety between
M\E and M\W . All these Aristotelian relations can be summarized by means of
a classical square of opposition, as shown in Fig. 9(b).

The Euler diagram in Fig. 9(a) has thus been transformed into a well-defined
Aristotelian diagram, viz. the classical square of opposition in Fig. 9(b). However,
if we consider not only W and E (and their complements), but also the third
atomic element of B3, i.e. M\(W ∪E) (and its complement), then this very same
Euler diagram can also be transformed into another Aristotelian diagram. One
can easily show that M\(W ∪ E) is B3-contrary to W as well as to E. These
three sets thus constitute a triangle of contraries in B3. By also taking the three
other non-trivial elements of B3 into account, we can construct a JSB hexagon,
as shown in Fig. 9(c). Although Water and Earth by themselves do not exhaust
Matter (i.e. W ∪E 6= M), adding this third ‘remainder’ concept M\(W ∪E) does
exhaust Matter (i.e. W ∪E ∪M\(W ∪E) = M). This means that the diagram in
Fig. 9(c) is a strong JSB hexagon. This should not come as a surprise. After all,
Schopenhauer’s remarks that Water and Earth are mutually exclusive, together

13Since Water and Earth do not exhaust matter, it follows that M\(W ∪ E) 6= ∅.
14Schopenhauer does not explicitly say that the two spheres that lie inside the third one have to be
mutually exclusive, but his Euler diagram does display them as such; cf. Fig. 9(a). Furthermore,
immediately after giving the example, he does state that “The last case applies to all concepts

whose spheres do not have anything directly in common” [29, p. 67, my emphasis].
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Figure 9. (a) Schopenhauer’s Euler diagram; (b) first corre-
sponding Aristotelian diagram: a classical square of opposition;
(c) second corresponding Aristotelian diagram: a strong JSB
hexagon.

with the definition of M\(W ∪ E) as a ‘remainder’ concept, imply that the set
Π := {W,E,M\(W ∪ E)} is a 3-partition of B3. By Theorem 2.7 (item 2), this
3-partition gives rise to a strong α3-structure, i.e. a strong JSB hexagon, which has
the three elements of Π on its triangle of contraries. This JSB hexagon is exactly
the diagram shown in Fig. 9(c).

The Euler diagram in Fig. 9(a) can thus be transformed into a classical
square, i.e. an α2-structure, but also into a strong JSB hexagon, i.e. a strong α3-
structure. An analogous situation arises when we move to Euler diagrams with
higher numbers of spheres. Schopenhauer himself only considered and illustrated
the case where “Two [disjoint] spheres lie inside a third, but do not exhaust it” [29,
p. 67, my emphasis], and unlike the case discussed in Section 4, he did not general-
ize this to higher numbers of spheres. I will now discuss two such generalizations,
which are completely in line with Schopenhauer’s thinking.

The first generalization can be described as a case where “three disjoint
spheres lie inside a fourth, but do not exhaust it”. A concrete example involves the
concepts of Water, Earth and Air, all of which lie inside Matter; cf. the Euler dia-
gram in Fig. 10(a). The smallest Boolean algebra of sets that non-trivially contains
Water, Earth and Air has 24 = 16 elements. This Boolean algebra, which we will
again label B4, has top element M (for Matter), bottom element ∅, and four atomic
elements, viz. W (for Water), E (for Earth), A (for Air) and M\(W ∪ E ∪ A).
One can easily determine the Aristotelian relations that hold among Water, Earth
and Air and their complements in B4. This yields a JSB hexagon, as shown in
Fig. 10(b). Since Water, Earth and Air do not exhaust Matter, this diagram
is a weak JSB hexagon, i.e. a weak α3-structure. If we consider not only W ,
E and A (and their complements), but also the fourth atomic element of B4,
i.e. M\(W ∪ E ∪ A) (and its complement), then the Euler diagram in Fig. 10(a)
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Figure 10. (a) Schopenhauer-inspired Euler diagram; (b) first
corresponding Aristotelian diagram: a weak JSB hexagon; (c) sec-
ond corresponding Aristotelian diagram: a strong Moretti oc-
tagon.

can also be transformed into another Aristotelian diagram. One can easily show
that M\(W ∪ E ∪ A) is B4-contrary to W , to E and to A. These four sets thus
constitute a trapezoid of contraries in B4. By also taking the four complements
of W , E, A and M\(W ∪ E ∪ A) into account, we can construct a Moretti oc-
tagon, as shown in Fig. 10(c). Although Water, Earth and Air by themselves do
not exhaust Matter (i.e. W ∪E ∪A 6= M), adding this fourth ‘remainder’ concept
M\(W ∪E∪A) does exhaust Matter (i.e. W ∪E∪A∪M\(W ∪E∪A) = M). This
means that the diagram in Fig. 10(c) is a strong Moretti octagon. Once again, this
should not come as a surprise. After all, the fact that Water, Earth are Air are
mutually exclusive, together with the definition of M\(W ∪E∪A) as a ‘remainder’
concept, implies that the set Π := {W,E,A,M\(W ∪ E ∪ A)} is a 4-partition of
B4. By Theorem 2.7 (item 2), this 4-partition gives rise to a strong α4-structure,
i.e. a strong Moretti octagon, which has the four elements of Π on its trapezoid of
contraries. This Moretti octagon is exactly the diagram shown in Fig. 10(c).

I now briefly turn to a second generalization, which can be described as a case
where “four disjoint spheres lie inside a fifth, but do not exhaust it”. A concrete
example involves the concepts of Water, Earth, Air and Fire, all of which lie inside
Matter; cf. the Euler diagram in Fig. 11(a). The smallest Boolean algebra of sets
that non-trivially contains Water, Earth, Air and Fire has 25 = 32 elements. This
Boolean algebra, B5, has top element M (for Matter), bottom element ∅, and five
atomic elements, viz. W (for Water), E (for Earth), A (for Air), F (for Fire) and
M\(W ∪E ∪A∪F ). One can easily show that Water, Earth, Air and Fire yield a
Moretti octagon in B5, as shown in Fig. 11(b). Since Water, Earth, Air and Fire
do not exhaust Matter, this diagram is a weak Moretti octagon, i.e. a weak α4-
structure. If we consider not only W , E, A and F (and their complements), but also
the fifth atomic element of B5, i.e. M\(W ∪E∪A∪F ) (and its complement), then
the Euler diagram in Fig. 11(a) can also be transformed into another Aristotelian
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Figure 11. (a) Schopenhauer-inspired Euler diagram; (b) one
corresponding Aristotelian diagram: a weak Moretti octagon.
(There also exists another one, which is not shown here.)

diagram, viz. an α5-structure (which is not shown here, for reasons of space).
Although Water, Earth, Air and Fire by themselves do not exhaust Matter (i.e.W∪
E ∪A ∪ F 6= M), adding this fifth ‘remainder’ concept M\(W ∪E ∪A ∪ F ) does
exhaust Matter (i.e. W ∪E ∪A∪F ∪M\(W ∪E ∪A∪F ) = M). This means that
the α5-structure is a strong α5-structure, which is again perfectly in line with item
2 of Theorem 2.7, since {W,E,A, F,M\(W ∪ E ∪A ∪ F )} is a 5-partition of B5.

By now, the pattern that emerges should be very clear:

• The Euler diagram in Fig. 9(a) can be transformed into an α2-structure
(Fig. 9(b)), but also into a strong α3-structure (Fig. 9(c)).15

• The Euler diagram in Fig. 10(a) can be transformed into a weak α3-structure
(Fig. 10(b)), but also into a strong α4-structure (Fig. 10(c)).
• The Euler diagram in Fig. 11(a) can be transformed into a weak α4-structure

(Fig. 11(b)), but also into a strong α5-structure (not shown).

We can now combine these results with those of Section 4. In that section,
we have seen that whenever n ≥ 3 mutually disjoint spheres lie inside a given
sphere and also exhaust that sphere, they give rise to a strong αn-structure. In
this section, we have seen that whenever n ≥ 3 mutually disjoint spheres lie inside
a given sphere but do not exhaust it, they give rise to a weak αn-structure.16. By
explicitly distinguishing between cases where n ≥ 3 mutually disjoint spheres are
jointly exhaustive and cases where they are not jointly exhaustive, Schopenhauer
thus clearly anticipated the distinction between strong and weak αn-structures
(cf. Theorem 2.6), and hence, more generally, the insight that families of Aris-
totelian diagrams can have distinct Boolean subtypes.

15Since the family of classical squares is Boolean homogeneous, it makes little sense to talk about

a ‘weak’ α2-structure (recall Theorem 2.6, item 2).
16Recall that for n < 3, the family of αn-structures is Boolean homogeneous; cf. items 1 and 2
of Theorem 2.6.
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6. Conclusion

In this paper I have explored the connection between Schopenhauer’s Euler di-
agrams and the Aristotelian diagrams that are studied in contemporary logical
geometry. One can define the Aristotelian relations in a very general fashion (rela-
tive to arbitrary Boolean algebras), which allows us to define not only Aristotelian
diagrams for statements, but also for sets. I have shown that, once this gener-
alization has been made, each of Schopenhauer’s concrete Euler diagrams can be
transformed into a well-defined Aristotelian diagram. More importantly, I have also
argued that Schopenhauer had several more general, systematic insights about Eu-
ler diagrams, which anticipate general insights and theorems about Aristotelian
diagrams in contemporary logical geometry.

For example, it is well-known in logical geometry today that there are exactly
two types of Aristotelian squares, viz. classical squares and degenerate squares.
Schopenhauer had Euler diagrams that can be transformed into each of these
two types of Aristotelian squares (cf. Section 3). Furthermore, logical geometry
shows that there is a clear correspondence between n-partitions and (strong) αn-
structures. Schopenhauer anticipated this correspondence, by considering Euler
diagrams for n-partitions, each of which can be transformed into the correspond-
ing (strong) αn-structure; he also discussed this correspondence in its full general-
ity, i.e. by considering n-partitions for arbitrary n (cf. Section 4). Finally, logical
geometry emphasizes that many families of Aristotelian diagrams have distinct
Boolean subtypes. In particular, for n ≥ 3, the family of αn-structures has two
Boolean subtypes (strong and weak). By explicitly distinguishing between cases
where a number of (mutually disjoint) spheres are jointly exhaustive and cases
where they are not jointly exhaustive, Schopenhauer also displayed a remarkable
sensitivity to the subtle interplay between Aristotelian and Boolean considerations
(cf. Section 5).

In sum: because of his various concrete Euler diagrams and, especially, his
more systematic observations about them, Schopenhauer can rightly be considered
a distant forerunner of contemporary logical geometry, which studies Aristotelian
diagrams as objects of independent mathematical and philosophical interest.
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