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This paper studies John Buridan’s octagons of opposition for the de re modal propositions and the propositions of
unusual construction. Both Buridan himself and the secondary literature have emphasized the strong similarities
between these two octagons (as well as a third one, for propositions with oblique terms). In this paper, I argue
that the interconnection between both octagons is more subtle than has previously been thought: if we move
beyond the Aristotelian relations, and also take Boolean considerations into account, then the strong analogy
between Buridan’s octagons starts to break down. These differences in Boolean structure can already be discerned
within the octagons themselves; on a more abstract level, they lead to these two octagons having different degrees
of Boolean complexity (i.e. Boolean closures of different sizes). These results are obtained by means of bitstring
analysis, which is one of the key tools from contemporary logical geometry. Finally, I argue that this historical
investigation is directly relevant for the theoretical framework of logical geometry, and discuss how it helps us to
address certain open questions in this framework.

1. Introduction
John Buridan’s Summulae de Dialectica famously contains three ‘octagons of opposition’

(Klima 2001, van der Lecq 2005). These octagons can be seen as generalizations or extensions
of the well-known square of opposition, from four to eight propositions. One octagon of opposi-
tion is concerned with de re modal propositions (e.g. ‘every man necessarily runs’), a second one
deals with the so-called propositions of unusual construction, in which the predicate precedes the
copula (e.g. ‘every human some animal is’), and the third one contains propositions with oblique
(non-nominative) terms (e.g. ‘every donkey of every man runs’). Of these three diagrams, the
modal octagon has received by far the most attention in the contemporary literature (Hughes
1987, Lagerlund 2000, 2011, Campos-Beńıtez 2012, Read 2015, Johnston 2017), although there
has also been some work on the octagon for the propositions of unusual construction (Campos-
Beńıtez 2014). Furthermore, Read (2012) discusses all three octagons simultaneously.

Buridan’s three octagons are highly similar to each other, as far as the Aristotelian relations
are concerned. They all display the same configuration of Aristotelian relations among their
eight propositions (this will be made more precise later in the paper). These strong similarities
were explicitly noted by Buridan himself (Klima 2001, p. 43, my emphases):

from these [combinations] there results a complex figure of eight vertices, and in every vertex there
are nine propositions, just as in the figure for modal propositions. And then, consequently, from the
eight vertices there result twenty-eight combinations, the oppositions of which have rules entirely
similar to those given concerning modal propositions. For in its own way this figure here is similar
to the one there

These similarities have also been emphasized in the secondary literature. For example, Read
(2012) writes that “Buridan points to a revealing analogy between the three octagons” and
that “Buridan was able [. . . ] to exhibit a strong analogy between modal, oblique and non-
normal [i.e. unusual construction] propositions in his three octagons” (resp. p. 93 and p. 109,
my emphases). Furthermore, in his translation of the Summulae, Klima (2001) notes that “this
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reconstruction presents the relationships of all three types of propositions (namely, modals,
propositions with oblique terms, and propositions “of unusual construction”) that Buridan rec-
ognizes as exhibiting the same type of inferential pattern.” (p. 45, my emphasis). More recently,
Klima (2016) has again noted that “having observed the analogy of the logical behaviour of dual
quantifiers, quantified oblique terms and modal operators, Buridan expanded his Octagon to
these further types of propositions as well” (p. 330, my emphasis).1

The overarching goal of this paper is to revisit Buridan’s octagons, and to argue that their
interconnections are more subtle than has previously been thought: if we move beyond the Aris-
totelian relations, and also take Boolean considerations into account, then the strong analogy
between Buridan’s octagons starts to break down. In particular, I will show that the Boolean
structure of Buridan’s modal octagon differs from that of his octagon for the propositions of
unusual construction.2 These differences in Boolean structure can be discerned within the oc-
tagons themselves (in terms of certain propositions in an octagon being logically equivalent to
the conjunctions/disjunctions of other propositions in that octagon); on a more abstract level,
they also lead to these two octagons having different degrees of Boolean complexity (i.e. Boolean
closures of different sizes). Furthermore, I will show that this historical discussion naturally ties
in with various issues from logical geometry, i.e. the contemporary, systematic investigation of
Aristotelian diagrams. Typical examples of such issues are the existence of Boolean subfami-
lies within families of Aristotelian diagrams, and the use of bitstrings to measure the Boolean
complexity of Aristotelian diagrams.

The paper is organized as follows. Section 2 introduces Buridan’s modal octagon, and studies
some of its Boolean properties. Similarly, Section 3 introduces Buridan’s unusual construction
octagon, and compares its Aristotelian and Boolean structures to those of the modal octagon.
Next, Section 4 offers a more detailed and systematic investigation of the Boolean differences
between the two octagons, making extensive use of bitstring analysis. Section 5 then shows that
this historical investigation is directly relevant for the theoretical framework of logical geometry,
and discusses how it helps us to address certain open questions in this framework. Finally,
Section 6 summarizes the results obtained in this paper, and mentions some questions for future
research.3

2. Buridan’s modal octagon
We begin by considering Buridan’s octagon for modal syllogistics, which contains eight de re

modal propositions. Buridan starts from the four usual categorical statements (from the classical
square of opposition), and adds the modalities of necessity and possibility to them. For example,
given an ordinary categorical statement of the form ‘all S are P ’, we can construct the de re
modal propositions of the form ‘all S are necessarily P ’ and ‘all S are possibly P ’. In this way,
Buridan obtains a total number of eight modal propositions, which are listed here (together with
a symbolic formalization in the language of first-order modal logic, and an abbreviation that will
be used throughout this paper):

1Based on these similarities, Campos-Beńıtez (2014, p. 362) constructs “a more abstract Octagon”, which yields Buridan’s
three concrete octagons as specific instances. Each of Buridan’s octagons is essentially the result of composing two in-
dependent squares of opposition (Demey and Steinkrüger 2017), and thus also functions as a duality cube for composed
operator duality (Demey 2012, Demey and Smessaert 2016a, 2018b).

2I will thus not say much in this paper about Buridan’s third octagon of opposition, i.e. the octagon for propositions with
oblique terms. Roughly speaking, the idea is that even when Boolean considerations are also taken into account, this
octagon remains entirely analogous to the modal octagon. See Footnote 14 for more details.

3For ease of exposition, I will work with symbolic formalizations of Buridan’s propositions (both the modal propositions and
those of unusual construction) in the language of contemporary first-order logic. However, it should be emphasized that
the overall argumentation presented in this paper does not hinge in any way on the particular details of these symbolic
formalizations.
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Figure 1. (a) Code for visualizing the Aristotelian relations; (b) Buridan’s modal octagon.

1. all S are necessarily P ∃x♦Sx ∧ ∀x(♦Sx→ �Px) ∀�
2. all S are possibly P ∃x♦Sx ∧ ∀x(♦Sx→ ♦Px) ∀♦
3. some S are necessarily P ∃x(♦Sx ∧�Px) ∃�
4. some S are possibly P ∃x(♦Sx ∧ ♦Px) ∃♦
5. all S are necessarily not P ∀x(♦Sx→ �¬Px) ∀�¬
6. all S are possibly not P ∀x(♦Sx→ ♦¬Px) ∀♦¬
7. some S are necessarily not P ¬∃x♦Sx ∨ ∃x(♦Sx ∧�¬Px) ∃�¬
8. some S are possibly not P ¬∃x♦Sx ∨ ∃x(♦Sx ∧ ♦¬Px) ∃♦¬

Note that in the first-order formalizations, the subject term S is systematically preceded by a
possibility operator ♦. This is meant to capture Buridan’s theory of ampliation, which holds
that in modal propositions, the subject term does not merely supposit for actually existing
entities, but also for possibly existing entities (Klima 2001, p. 84); see Johnston (2015) for more
discussion. Furthermore, Buridan holds that affirmative propositions have existential import, but
negative propositions do not (Klima 2009, Ch. 6). Consequently, the first-order formalizations
of ∀� and ∀♦ contain a conjunct of the form ∃x♦Sx, while those of ∃�¬ and ∃♦¬ contain a
disjunct of the form ¬∃x♦Sx.4

Buridan goes on to determine the Aristotelian relations holding between these eight de re
modal propositions, and finds that “we have ten subalternations, five contrarieties, five subcon-
trarieties, four contradictions, and four disparities, which obey no law [of opposition]. And thus
clearly there are twenty-eight combinations” (Klima 2001, p. 79).5 For example, the propositions
∀� and ∃♦¬ are contradictory: they cannot be true together and they cannot be false together.
Similarly, ∀� and ∀�¬ are contrary to each other: these two propositions cannot be true together,
but they can be false together. Notably, Buridan also finds four pairs of propositions “that are
disparate, and do not stand in any relation of opposition” (Klima 2001, p. 79), because “such
propositions can be true at the same time [. . . ] and they can be false at the same time [. . . ]. And
[. . . ] it is impossible that one should follow from the other” (Klima 2001, p. 81).6 In order to
visually represent the eight modal propositions, together with the Aristotelian relations holding
between them, Buridan draws an octagon of opposition. Figure 1(b) shows a modern version of
this octagon, making use of the abbreviations for the modal propositions introduced above.7

4Note that in these conjuncts/disjuncts, too, the subject term S is preceded by a possibility operator ♦, because of Buridan’s
ampliation theory.

5Given 8 propositions, there are indeed 8×7
2

= 28 pairs of distinct propositions, i.e. 28 pairs that can stand in some
Aristotelian relation.

6The third condition can be split into ‘the first proposition cannot follow from the second one’ and ‘the second proposition
cannot follow from the first one’. Buridan’s characterization of disparatae thus essentially consists of four conditions, viz. two
about the propositions being able to be true/false together, and two about the propositions following from each other. In
contemporary logical geometry, Buridan’s notion of disparatae is usually called ‘independence’ or ‘unconnectedness’, and
its four-condition characterization is studied in much more detail (Smessaert and Demey 2014b).

7See Read (2012, p. 106) for a reproduction of Buridan’s modal octagon as it actually appears in the manuscripts.
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The Aristotelian structure of the modal octagon (which propositions stand in which Aris-
totelian relations?) was already fully described by Buridan. However, neither Buridan himself,
nor anyone in the secondary literature, seems to have studied the Boolean structure of this
octagon in any detail. That is exactly what we are going to do now.

In some places, the Boolean structure of the octagon is fully determined by its Aristotelian
relations. For example, since there is a subalternation from ∀� to ∀♦, it follows that the con-
junction ∀�∧∀♦ is logically equivalent to ∀� itself, and that the disjunction ∀�∨∀♦ is logically
equivalent to ∀♦ itself. Similarly, since ∀� is contrary to ∀�¬, it follows that the conjunction
∀� ∧ ∀�¬ is contradictory (⊥) in nature, and since ∃♦ is subcontrary to ∃♦¬, it follows that
the disjunction ∃♦ ∨ ∃♦¬ is tautological (>) in nature. However, in other places, the Boolean
structure of the modal octagon is not determined by its Aristotelian relations. For example,
since ∀♦ and ∃� are unconnected (disparatae), their conjunction and disjunction are contingent
propositions, whose relationship to the other propositions in the octagon has to be determined
independently. Let us first examine their conjunction, and then their disjunction.

First of all, we consider the relation between ∀� and the conjunction of ∀♦ and ∃�. Since ∀�
entails ∀♦ as well as ∃� (cf. the subalternations in the octagon in Figure 1(b)), it follows that ∀�
also entails their conjunction, ∀♦ ∧ ∃�. However, the converse entailment does not hold. To see
this, consider a situation in which there exist exactly two objects, a and b, and in which it holds
that ♦Sa, ♦Sb, �Pa, ♦Pb and ¬�Pb. One can easily check that in this situation, it holds that
∃x♦Sx∧∀x(♦Sx→ ♦Px), i.e. ∀♦ is true. Similarly, in this situation it holds that ∃x(♦Sx∧�Px),
i.e. ∃� is also true. However, in this situation it does not hold that ∃x♦Sx ∧ ∀x(♦Sx → �Px)
(since ♦Sb and yet ¬�Pb), i.e. ∀� is false. Hence, there exists a situation in which ∀♦ ∧ ∃� is
true, while ∀� is false, which means exactly that ∀♦∧∃� does not entail ∀�.8 We thus find that
∀� entails, but is itself not entailed by, ∀♦∧∃�. Consequently, ∀� is not logically equivalent to
∀♦ ∧ ∃�.

Secondly, we consider the relation between ∃♦ and the disjunction of ∀♦ and ∃�. Since ∀♦
as well as ∃� entail ∃♦ (cf. the subalternations in the octagon in Figure 1(b)), it follows that
their disjunction, ∀♦ ∨ ∃�, also entails ∃♦. However, the converse entailment does not hold. To
see this, consider a situation in which there exist exactly two objects, a and b, and in which
it holds that ♦Sa, ♦Sb, ♦Pa, ¬�Pa and ¬♦Pb. One can easily check that in this situation,
it holds that ∃x(♦Sx ∧ ♦Px), i.e. ∃♦ is true. However, in this situation it does not hold that
∃x♦Sx∧∀x(♦Sx→ ♦Px) (since ♦Sb and yet ¬♦Pb), i.e. ∀♦ is false. Similarly, in this situation
it does not hold that ∃x(♦Sx ∧ �Px), i.e. ∃� is also false. Hence, there exists a situation in
which ∃♦ is true, while ∀♦ ∨ ∃� is false, which means exactly that ∃♦ does not entail ∀♦ ∨ ∃�.
We thus find that ∀♦ ∨ ∃� entails, but is itself not entailed by, ∃♦. Consequently, ∀♦ ∨ ∃� is
not logically equivalent to ∃♦.

In sum, then, ∀� is not logically equivalent to ∀♦ ∧ ∃�, while ∃♦ is not logically equivalent
to ∀♦ ∨ ∃�. Moving from the left side to the right side of the modal octagon, one can show
in exactly the same way that ∀�¬ is not logically equivalent to ∀♦¬ ∧ ∃�¬, while ∃♦¬ is not
logically equivalent to ∀♦¬ ∨ ∃�¬.

To facilitate our discussion of Buridan’s octagons, we will introduce generic labels for the
propositions that appear in them. In particular, α will denote the proposition that appears in an
octagon’s upper left corner, β1 and β2 will denote the two ‘intermediate’ propositions on the left
side of the octagon, and γ will denote the proposition that appears in the octagon’s lower left
corner; the negated propositions ¬α, ¬β1, ¬β2 and ¬γ systematically appear in the diametrically
opposed corners on the right side of the octagon; cf. Figure 2. For example, in Buridan’s modal
octagon, α stands for the concrete modal proposition ∀�, β1 and β2 stand for the concrete modal
propositions ∀♦ and ∃�, and γ stands for the concrete modal proposition ∃♦. Reformulating
our earlier conclusions in terms of these generic labels, we find that in Buridan’s modal octagon

8If desired, this informal argument can easily be developed into a formal model-theoretical proof that ∀♦ ∧ ∃� does not
entail ∀�. Similar remarks apply to the informal arguments presented in the next paragraph and in Section 3.
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Figure 2. Generic labels for the propositions appearing in Buridan’s octagons.

• α is not logically equivalent to β1 ∧ β2,

• γ is not logically equivalent to β1 ∨ β2,

• ¬α is not logically equivalent to ¬β1 ∨ ¬β2,

• ¬γ is not logically equivalent to ¬β1 ∧ ¬β2.

From a Boolean perspective, Buridan’s modal octagon thus turns out to be highly symmetric
in nature. First of all, there is a symmetry between the upper and lower parts of the modal
octagon: (i) neither α nor γ is logically equivalent to the conjunction/disjunction of β1 and β2,
and (ii) neither ¬α nor ¬γ is logically equivalent to the conjunction/disjunction of ¬β1 and ¬β2.
Secondly, there is a symmetry between the left and right parts of the modal octagon: (i) neither
α nor ¬γ is logically equivalent to the conjunction of (¬)β1 and (¬)β2, and (ii) neither γ nor ¬α
is logically equivalent to the disjunction of (¬)β1 and (¬)β2.

3. Buridan’s octagon for the propositions of unusual construction
We now turn to another of Buridan’s octagons, viz. that for the propositions of unusual

construction. In such propositions, the predicate precedes the copula; furthermore, the copula
expresses identity,9 and both the subject term and the predicate term are explicitly quantified,
in order to indicate whether or not they are distributed. This constitutes a typical example of
the tendency in late medieval logic to use the vernacular language (Latin) in a highly regimented
form (Klima 2016, Read 2017). Buridan again starts from the four usual categorical statements
(from the classical square of opposition), and puts the predicate term in front of the copula,
together with a quantifier (all/some). For example, given an ordinary categorical statement of
the form ‘all S are P ’, we can construct propositions of unusual construction of the form ‘all S all
P are’ and ‘all S some P are’. In this way, Buridan obtains a total number of eight propositions
of unusual construction, which are listed here (together with a symbolic formalization in the
language of first-order logic with identity, and an abbreviation that will be used throughout this
paper) (Klima 2016, p. 330):

1. all S all P are ∃xSx ∧ ∃yPy ∧ ∀x(Sx→ ∀y(Py → x = y)) ∀∀
2. all S some P are ∃xSx ∧ ∀x(Sx→ ∃y(Py ∧ x = y)) ∀∃
3. some S all P are ∃yPy ∧ ∃x(Sx ∧ ∀y(Py → x = y)) ∃∀
4. some S some P are ∃x(Sx ∧ ∃y(Py ∧ x = y)) ∃∃
5. all S all P are not ∀x(Sx→ ∀y(Py → x 6= y)) ∀∀¬
6. all S some P are not ¬∃yPy ∨ ∀x(Sx→ ∃y(Py ∧ x 6= y)) ∀∃¬
7. some S all P are not ¬∃xSx ∨ ∃x(Sx ∧ ∀y(Py → x 6= y)) ∃∀¬
8. some S some P are not ¬∃xSx ∨ ¬∃yPy ∨ ∃x(Sx ∧ ∃y(Py ∧ x 6= y)) ∃∃¬

9Cf. Klima (2008, p. 413) for more details on the identity theory of predication.



June 18, 2018 10:55 History and Philosophy of Logic paper

6 L. Demey

Figure 3. (a) Buridan’s octagon for the propositions of unusual construction; (b) the classical square of opposition for the
categorical statements embedded as a subdiagram inside this octagon.

Recall that Buridan holds that affirmative propositions have existential import, but negative
propositions do not (Klima 2009, Ch. 6). Consequently, the first-order formalizations of ∀∀,
∀∃ and ∃∀ contain conjuncts of the form ∃xSx and/or ∃yPy, while those of ∀∃¬, ∃∀¬ and
∃∃¬ contain disjuncts of the form ¬∃xSx and/or ¬∃yPy. Some of the propositions of unusual
construction are logically equivalent to the ordinary categorical statements. In particular, it is
straightforward to show that (i) ∀∃ is equivalent to ∃xSx ∧ ∀x(Sx → Px), i.e. ‘all S are P ’
(with existential import), (ii) ∃∃ is equivalent to ∃x(Sx ∧ Px), i.e. ‘some S are P ’, (iii) ∃∀¬ is
equivalent to ¬∃xSx∨∃x(Sx∧¬Px), i.e. ‘not all S are P ’ (without existential import), and (iv)
∀∀¬ is equivalent to ∀x(Sx→ ¬Px), i.e. ‘no S are P ’ (without existential import). By contrast,
the four remaining propositions of unusual construction, ∀∀, ∃∀, ∃∃¬ and ∀∃¬, are not logically
equivalent to any simpler expressions.

Once again, we can determine the Aristotelian relations holding between these eight proposi-
tions of unusual construction, and find the same numbers of subalternations, contrarieties, etc. as
with the eight de re modal propositions in Figure 1(b). For example, the propositions ∀∀ and
∃∃¬ are contradictory: they cannot be true together and they cannot be false together. Simi-
larly, ∀∀ and ∀∀¬ are contrary to each other: these two propositions cannot be true together, but
they can be false together. Furthermore, we again find four unconnected pairs of propositions,
which do not stand in any Aristotelian relation at all. In order to visually represent the eight
propositions of unusual constructions, together with the Aristotelian relations holding between
them, Buridan draws another octagon of opposition. Figure 3(a) shows a modern version of this
octagon, making use of the abbreviations for the propositions of unusual construction introduced
above.10 Note that the four propositions of unusual construction that are logically equivalent
to the categorical statements, i.e. ∀∃, ∃∃, ∃∀¬ and ∀∀¬, jointly constitute a classical square of
opposition, which can be seen as a subdiagram that is embedded inside this octagon; cf. Fig-
ure 3(b). More importantly, note that we can again use the labels introduced in Figure 2 to talk
about this octagon; for example, α stands for the concrete proposition of unusual construction
∀∀, β1 and β2 stand for the concrete propositions of unusual construction ∀∃ and ∃∀, and γ
stand for the concrete proposition of unusual construction ∃∃.

The Aristotelian structure of the unusual construction octagon (which propositions stand
in which Aristotelian relations?) was already fully described by Buridan. By comparing the
unusual construction octagon (Figure 3(a)) to the modal octagon (Figure 1(b)), we immediately
see that both diagrams have exactly the same configuration of Aristotelian relations among their
propositions. (As was mentioned in the introduction, Buridan himself was already well aware
of this.) To make this more precise, we define a bijective function f that maps each modal
proposition onto a proposition of unusual construction, by putting f(∀�) := ∀∀, f(∀♦) = ∀∃,

10See Read (2012, p. 100) for a reproduction of Buridan’s unusual construction octagon as it actually appears in the
manuscripts.
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f(∃�) = ∃∀, f(∃♦) = ∃∃, etc. Given any propositions ϕ,ψ from the modal octagon, it can be
shown that ϕ and ψ stand in some Aristotelian relation (in the system of first-order modal logic)
iff f(ϕ) and f(ψ) stand in that same Aristotelian relation (in the system of first-order logic with
identity). Using terminology from logical geometry (Demey and Smessaert 2017a, Demey 2018),
the function f is therefore said to be an Aristotelian isomorphism. The octagons in Figures 1(b)
and 3(a) thus belong to the same ‘family’ of Aristotelian diagrams. Since John Buridan was,
historically speaking, the first author to study concrete members of this Aristotelian family, it
is often called the family of Buridan octagons.11

We will now study the Boolean structure of the unusual construction octagon (which has
hitherto not been done). Just like with the modal octagon, the Boolean structure of this diagram
is in some places entirely determined by its Aristotelian relations. For example, since there is a
subalternation from ∀∀ to ∀∃, it follows that the conjunction ∀∀∧∀∃ is logically equivalent to ∀∀
itself, and since ∀∀ is contrary to ∀∀¬, it follows that the conjunction ∀∀∧∀∀¬ is contradictory (⊥)
in nature. However, in other places, the Boolean structure of the unusual construction octagon
is not determined by its Aristotelian relations. For example, since ∀∃ and ∃∀ are unconnected
(disparatae), their conjunction and disjunction are contingent propositions, whose relationship
to the other propositions in the octagon has to be determined independently. Let us first examine
their conjunction, and then their disjunction.

First of all, we consider the relation between ∀∀ and the conjunction of ∀∃ and ∃∀. Since ∀∀
entails ∀∃ as well as ∃∀ (cf. the subalternations in the octagon in Figure 3(a)), it follows that
∀∀ also entails their conjunction, ∀∃ ∧ ∃∀. In sharp contrast with the discussion in the previous
section, the converse entailment holds as well. Assume ∀∃ ∧ ∃∀; we will prove ∀∀. From ∀∃ it
follows that ∃xSx and from ∃∀ it follows that ∃yPy. In order to prove ∀∀, i.e. ∃xSx ∧ ∃yPy ∧
∀x(Sx → ∀y(Py → x = y)), it thus suffices to show that ∀x(Sx → ∀y(Py → x = y)). Consider
an arbitrary object a and assume Sa; furthermore, consider an arbitrary object b and assume
Pb. It now suffices to show that a = b. From ∃∀ it follows that there exists an object, say c, such
that Sc and ∀y(Py → c = y) (†). From ∀∃ it follows that ∀x(Sx → Px). Combining this with
(†), we find that ∀x(Sx → c = x) (‡). Since Sa, it follows from (‡) that c = a. Similarly, since
Pb, it follows from (†) that c = b. Hence we find that a = c = b, QED. We thus find that ∀∀
entails, and is itself entailed by, ∀∃ ∧ ∃∀. Consequently, ∀∀ is logically equivalent to ∀∃ ∧ ∃∀.

Secondly, we consider the relation between ∃∃ and the disjunction of ∀∃ and ∃∀. Since ∀∃ as
well as ∃∀ entail ∃∃ (cf. the subalternations in the octagon in Figure 3(a)), it follows that their
disjunction, ∀∃ ∨ ∃∀, also entails ∃∃. However, the converse entailment does not hold. To see
this, consider a situation in which there exist exactly three objects, a, b and c, and in which it
holds that Sa, Sb, Sc, Pa, ¬Pb and Pc. One can easily check that in this situation, it holds
that ∃x(Sx ∧ ∃y(Py ∧ x = y)), i.e. ∃∃ is true. However, in this situation it does not hold that
∃xSx∧ ∀x(Sx→ ∃y(Py ∧ x = y)) (since Sb and yet ¬∃y(Py ∧ b = y)), i.e. ∀∃ is false. Similarly,
in this situation it does not hold that ∃yPy ∧ ∃x(Sx ∧ ∀y(Py → x = y)) (since a and c are two
distinct objects such that Pa and Pc), i.e. ∃∀ is also false. Hence, there exists a situation in
which ∃∃ is true, while ∀∃ ∨ ∃∀ is false, which means exactly that ∃∃ does not entail ∀∃ ∨ ∃∀.
We thus find that ∀∃ ∨ ∃∀ entails, but is itself not entailed by, ∃∃. Consequently, ∀∃ ∨ ∃∀ is not
logically equivalent to ∃∃.

In sum, then, ∀∀ is logically equivalent to ∀∃ ∧ ∃∀, while ∃∃ is not logically equivalent to
∀∃ ∨ ∃∀. Moving from the left side to the right side of the unusual construction octagon, one
can show in exactly the same way that ∀∀¬ is not logically equivalent to ∀∃¬ ∧ ∃∀¬, while ∃∃¬
is logically equivalent to ∀∃¬ ∨ ∃∀¬. Reformulating everything in terms of the generic labels

11 Just to be clear: the Aristotelian family of Buridan octagons is an abstract class, which contains (infinitely) many
diagrams. Some (specifically: three) members of this family were studied by the historical author John Buridan, but it also
contains (infinitely) many members that were unknown to Buridan in the Middle Ages. (We will encounter some of these
other members in Section 5.) There is nothing paradoxical about this situation. For example, in abstract algebra, the class
of Abelian groups is named after the mathematician Niels Abel (1802–1829), and contains (infinitely) many groups. Some
members of this class were studied by the historical author Niels Abel, but it also contains (infinitely) many members that
were unknown to Abel in the early 19th century.
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introduced above, we find that in Buridan’s unusual construction octagon

• α is logically equivalent to β1 ∧ β2,

• γ is not logically equivalent to β1 ∨ β2,

• ¬α is logically equivalent to ¬β1 ∨ ¬β2,

• ¬γ is not logically equivalent to ¬β1 ∧ ¬β2.

From a Boolean perspective, Buridan’s unusual construction octagon is thus not at all sym-
metric. First of all, there is no symmetry between the upper and lower parts of the unusual
construction octagon: (i) α is logically equivalent to the conjunction of β1 and β2, but γ is not
logically equivalent to their disjunction; (ii) ¬γ is not logically equivalent to the conjunction of
¬β1 and ¬β2, but ¬α is logically equivalent to their disjunction. Secondly, there is no symmetry
between the left and right parts of the unusual construction octagon: (i) α is logically equivalent
to the conjunction of β1 and β2, but ¬γ is not logically equivalent to the conjunction of ¬β1

and ¬β2; (ii) γ is not logically equivalent to the disjunction of β1 and β2, but ¬α is logically
equivalent to the disjunction of ¬β1 and ¬β2.

Let’s compare these conclusions to the ones reached at the end of Section 2. It should be
clear that, even though Buridan’s modal octagon (Figure 1(b)) and his unusual construction
octagon (Figure 3(a)) are highly similar in terms of the Aristotelian relations holding between
their respective propositions (cf. the Aristotelian isomorphism f introduced above), there are
nevertheless subtle Boolean differences between both diagrams. In particular, in the modal oc-
tagon, α is not logically equivalent to β1 ∧ β2, but in the unusual construction octagon, this
equivalence does hold. Furthermore, the modal octagon is highly symmetric (upper/lower and
left/right parts) in terms of its Boolean structure, but in the unusual construction octagon,
this symmetry is completely lost. Finally, these Boolean differences also have an impact on the
Aristotelian isomorphism f between the two octagons. We have already seen that f respects the
octagons’ Aristotelian structure: ϕ and ψ stand in some Aristotelian relation iff f(ϕ) and f(ψ)
stand in that same Aristotelian relation. However, f does not respect the octagons’ Boolean
structure: we have ∀♦ ∧ ∃� 6≡ ∀�, and yet f(∀♦) ∧ f(∃�) = ∀∃ ∧ ∃∀ ≡ ∀∀ = f(∀�).

4. A bitstring analysis of the two octagons
In the previous two sections I have shown that there are Boolean differences between Buridan’s

modal octagon and his unusual construction octagon. These differences can already be discerned
in the diagrams themselves, for example by asking whether the conjunction of two propositions in
a given octagon is logically equivalent to some other proposition in that octagon. In this section I
will undertake a more detailed investigation of the Boolean differences between the two octagons.
For this purpose I will make use of bitstring analysis, a powerful tool from contemporary logical
geometry (Smessaert and Demey 2017).

Bitstrings are combinatorial representations of propositions that provide a concrete grip on
the logical behavior of a given Aristotelian diagram (including its Aristotelian relations as well
as its Boolean structure). A systematic technique for assigning bitstrings to any finite fragment
F of propositions in any logical system S is described in detail in Demey and Smessaert (2017a);
here I will focus on those aspects that are relevant for our current purposes. Given a fragment
F = {ϕ1, . . . , ϕm} from the language LS of the logical system S, the partition of S induced by F
is defined as

ΠS(F) := {α ∈ LS | α ≡S ±ϕ1 ∧ · · · ∧ ±ϕm, and α is S-consistent}

(where +ϕ = ϕ and −ϕ = ¬ϕ).12 Furthermore, the Boolean closure of F in S, denoted BS(F),

12The set ΠS(F) is called a ‘partition’ of (the class of models of) S because its elements are (i) jointly exhaustive, i.e. S |=∨
ΠS(F), and (ii) mutually exclusive, i.e. S |= ¬(α ∧ β) for distinct α, β ∈ ΠS(F).
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is the smallest Boolean subalgebra of the Lindenbaum-Tarski algebra of S that contains F .
Informally, BS(F) contains exactly the Boolean combinations of propositions from F . It can be
shown that every proposition in the Boolean closure of F is logically equivalent to a disjunction
of elements of the partition induced by F : for every ϕ ∈ BS(F) we have

ϕ ≡S

∨
{α ∈ ΠS(F) | |=S α→ ϕ}.

The bitstring semantics βFS maps each formula ϕ ∈ BS(F) to its bitstring representation βFS (ϕ) ∈
{0, 1}|ΠS(F)|, which ‘keeps track’ of which formulas of ΠS(F) enter into this disjunction. For
example, if ΠS(F) = {α1, α2, α3, α4}, then βFS (ϕ) = 1011 means that ϕ ≡S α1 ∨ α3 ∨ α4. Note
that |ΠS(F)| is the length of the bitstring βFS (ϕ). It can be shown that βFS is an Aristotelian

isomorphism between BS(F) and {0, 1}|ΠS(F)|, in the sense introduced above. Furthermore, it can
also be shown that this mapping is a Boolean algebra isomorphism, and hence, that BS(F) is
isomorphic to the Boolean algebra {0, 1}|ΠS(F)|, and thus contains 2|ΠS(F)| elements. The bitstring
length |ΠS(F)| thus provides a direct measure of the Boolean complexity of F .

After this (admittedly very quick) summary of bitstring analysis, we are now in a position to
apply this technique to Buridan’s octagons. We start with the modal octagon. Let Fm be the
set of propositions appearing in this octagon, i.e. Fm := {∀�,∀♦,∃�, ∃♦, ∀�¬,∀♦¬,∃�¬, ∃♦¬}
(cf. Figure 1(b)), and let FOL� be some system of first-order modal logic.13 In order to determine
the partition of FOL� that is induced by Fm, we have to consider all conjunctions of (possibly
negated) propositions from Fm. For example, two of these conjunctions are the following:

• ∀� ∧ ∀♦ ∧ ∃� ∧ ∃♦ ∧ ¬∀�¬ ∧ ¬∀♦¬ ∧ ¬∃�¬ ∧ ¬∃♦¬ and

• ∀� ∧ ¬∀♦ ∧ ∃� ∧ ∃♦ ∧ ¬∀�¬ ∧ ¬∀♦¬ ∧ ¬∃�¬ ∧ ¬∃♦¬.

The former conjunction can be shown to be FOL�-equivalent to the simpler proposition ∀�, while
the latter can be shown to be FOL�-inconsistent (because its first two conjuncts are already
FOL�-inconsistent with each other). By systematically going through all conjunctions of this
form, rewriting the conjunctions as simpler, FOL�-equivalent propositions whenever possible,
and discarding the FOL�-inconsistent conjunctions, we find the partition induced by Buridan’s
modal octagon:

ΠFOL�(Fm) = { α1 := ∀�,
α2 := ∀♦ ∧ ∃� ∧ ∃♦¬,
α3 := ∀♦ ∧ ∀♦¬,
α4 := ∃� ∧ ∃�¬,
α5 := ∀♦¬ ∧ ∃�¬ ∧ ∃♦,
α6 := ∀�¬ }.

For ease of notation, we will write the bitstring semantics βFm

FOL� that corresponds to this

partition simply as βm. Since |ΠFOL�(Fm)| = 6, the modal octagon can be represented by means

of bitstrings of length 6. For example, since ∃� is FOL�-equivalent to α1 ∨ α2 ∨ α4, it can be
represented as the bitstring 110100, i.e. βm(∃�) = 110100. The bitstrings of all eight propositions
in the modal octagon are shown in Figure 4(a). In particular, note that

• βm(∀♦) ∧ βm(∃�) = 111000 ∧ 110100 = 110000 6= 100000 = βm(∀�) and

• βm(∀♦) ∨ βm(∃�) = 111000 ∨ 110100 = 111100 6= 111110 = βm(∃♦).

These are the ‘bitstring versions’ of the facts that ∀♦ ∧ ∃� is not equivalent to ∀� and that
∀♦∨ ∃� is not equivalent to ∃♦ (which were originally proved in Section 2). Furthermore, since

13The precise details of FOL� do not matter here (as long as it contains the axiom �p→ ♦p). For example, since Fm only

contains de re modal propositions, it is irrelevant whether FOL� contains the Barcan formula and/or converse Barcan
formula as an axiom (Fitting and Mendelsohn 1998).
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Figure 4. The bitstring representations of Buridan’s (a) modal octagon and (b) unusual construction octagon.

|ΠFOL�(Fm)| = 6, it follows that the Boolean closure of Buridan’s modal octagon is isomorphic to
{0, 1}6, i.e. BFOL�(Fm) ∼= {0, 1}6. This Boolean closure thus contains 26 = 64 elements, i.e. there
exist 64 distinct Boolean combinations of the propositions that appear in the modal octagon.

We now turn to Buridan’s unusual construction octagon. Let Fu be the set of propositions
appearing in this octagon, i.e. Fu := {∀∀,∀∃, ∃∀,∃∃,∀∀¬, ∀∃¬,∃∀¬,∃∃¬} (cf. Figure 3(a)), and
let FOL= be the system of first-order logic with identity. We again systematically go through
all conjunctions of (possibly negated) propositions from Fu, rewrite the conjunctions as simpler,
FOL=-equivalent propositions whenever possible, and discard the FOL=-inconsistent conjunc-
tions. In this way we find the partition induced by Buridan’s unusual construction octagon
(note the odd numbering of the partition’s elements, which will be explained later):

ΠFOL=(Fu) = { α′
1 := ∀∀,
α′

3 := ∀∃ ∧ ∀∃¬,
α′

4 := ∃∀ ∧ ∃∀¬,
α′

5 := ∀∃¬ ∧ ∃∀¬ ∧ ∃∃,
α′

6 := ∀∀¬ }.

For ease of notation, we will write the bitstring semantics βFu

FOL= that corresponds to this par-
tition simply as βu. Since |ΠFOL=(Fu)| = 5, the unusual construction octagon can be represented
by means of bitstrings of length 5. For example, since ∃∀ is FOL=-equivalent to α′

1∨α′
4, it can be

represented as the bitstring 10100, i.e. βu(∃∀) = 10100. The bitstrings of all eight propositions
in the unusual octagon are shown in Figure 4(b). In particular, note that

• βu(∀∃) ∧ βu(∃∀) = 11000 ∧ 10100 = 10000 = βu(∀∀) and

• βu(∀∃) ∨ βu(∃∀) = 11000 ∨ 10100 = 11100 6= 11110 = βu(∃∃).

These are the ‘bitstring versions’ of the facts that ∀∃∧∃∀ is equivalent to ∀∀ and that ∀∃∨∃∀ is not
equivalent to ∃∃ (which were originally proved in Section 3). Furthermore, since |ΠFOL=(Fu)| = 5,
it follows that the Boolean closure of Buridan’s unusual construction octagon is isomorphic
to {0, 1}5, i.e. BFOL=(Fu) ∼= {0, 1}5. This Boolean closure thus contains 25 = 32 elements,
i.e. there exist 32 distinct Boolean combinations of the propositions that appear in the unusual
construction octagon.

In light of this bitstring analysis, we can now draw a systematic comparison between Buridan’s
modal octagon and his unusual construction octagon. The former induces a partition ΠFOL�(Fm)
of 6 elements (and can thus be represented by bitstrings of length 6), whereas the latter induces
a partition ΠFOL=(Fu) of only 5 elements (and can thus be represented by bitstrings of length
5). In other words, the unusual construction octagon has a lower Boolean complexity than the
modal octagon. This lower Boolean complexity manifests itself in a higher number of logical
equivalences among Boolean combinations of propositions of unusual construction. As we have
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seen in Section 3, some of these additional equivalences can already be found within the unusual
construction octagon itself. However, the full effects of this higher number of logical equivalences
can only be felt at the level of the Boolean closures of the two octagons. The Boolean closure
of the modal octagon contains 26 = 64 elements, whereas that of the unusual construction
octagon contains only 25 = 32 elements. There are thus fewer Boolean combinations of unusual
construction propositions than there are of modal propositions. The reason for this is precisely
that there are more logical equivalences among Boolean combinations of unusual construction
propositions than there are among Boolean combinations of modal propositions. For example,
recall that ∀� and ∀♦ ∧ ∃� are not FOL�-equivalent and thus count as two distinct Boolean
combinations in the Boolean closure of the modal octagon; by contrast, their counterparts ∀∀
and ∀∃ ∧ ∃∀ are FOL=-equivalent and thus count as just a single Boolean combination in the
Boolean closure of the unusual construction octagon.14

Finally, looking back at the Aristotelian isomorphism f , it should be noted that the elements
of ΠFOL=(Fu) are clearly the counterparts of those of ΠFOL�(Fm):

α1 = ∀� and α′
1 = ∀∀ = f(∀�),

α3 = ∀♦ ∧ ∀♦¬ and α′
3 = ∀∃ ∧ ∀∃¬ = f(∀♦) ∧ f(∀♦¬),

α4 = ∃� ∧ ∃�¬ and α′
4 = ∃∀ ∧ ∃∀¬ = f(∃�) ∧ f(∃�¬),

α5 = ∀♦¬ ∧ ∃�¬ ∧ ∃♦ and α′
5 = ∀∃¬ ∧ ∃∀¬ ∧ ∃∃ = f(∀♦¬) ∧ f(∃�¬) ∧ f(∃♦),

α6 = ∀�¬ and α′
6 = ∀∀¬ = f(∀�¬).

If we try to determine the counterpart of α2 in the same fashion, we find f(∀♦)∧f(∃�)∧f(∃♦¬),
i.e. ∀∃ ∧ ∃∀ ∧ ∃∃¬; however, the latter is FOL=-inconsistent (note that it can be rewritten as
(∀∃ ∧ ∃∀) ∧ ∃∃¬ ≡FOL= ∀∀ ∧ ¬∀∀). Since α2 ∈ ΠFOL�(Fm) does not have a counterpart in
ΠFOL=(Fu), the bitstring representations of the unusual construction octagon are exactly the
result of systematically deleting the second bit position in the bitstring representations of the
modal octagon (cf. Figure 4). This process of deleting one bit position does not have any effect
on the octagons’ Aristotelian stucture (they are Aristotelian isomorphic!), but as we have seen
above, it does have a significant effect on their Boolean structure.

To make this more formally precise, consider the sets βm[Fm] := {βm(ϕ) | ϕ ∈ Fm} ⊆ {0, 1}6
and βu[Fu] := {βu(ϕ) | ϕ ∈ Fu} ⊆ {0, 1}5, and let f ′ : βm[Fm] → βu[Fu] be the function that
systematically deletes a bitstring’s second bit position. One can then show that the diagram
below commutes, i.e. βu(f(ϕ)) = f ′(βm(ϕ)) for all ϕ ∈ Fm. Furthermore, the function f ′ respects
the Aristotelian structure of βm[Fm] and βu[Fu]: two bitstrings b1, b2 ∈ βm[Fm] stand in some
Aristotelian relation iff f ′(b1), f ′(b2) ∈ βu[Fu] stand in that same Aristotelian relation. However,
f ′ does not respect the Boolean structure of βm[Fm] and βu[Fu]: we have 111000 ∧ 110100 6=
100000, and yet f ′(111000) ∧ f ′(110100) = 11000 ∧ 10100 = 10000 = f ′(100000).15

Fm Fu

βm[Fm] βu[Fu]

βm

f

◦ βu

f ′

14 In exactly the same way as was done here for Buridan’s modal octagon and unusual construction octagon, one can also
perform a bitstring analysis of Buridan’s third octagon of opposition, i.e. that for propositions with oblique terms. That
octagon turns out to have a Boolean complexity of 6 (i.e. it can be represented with bitstrings of length 6, and its Boolean
closure contains 26 = 64 elements) (Demey and Smessaert 2017a, Subsection 5.2, in particular Footnote 44), just like
the modal octagon studied in this paper. While Buridan’s three octagons are all Aristotelian isomorphic to each other,
there are thus clear differences between them: the modal octagon and the oblique octagon have a Boolean complexity of
6, whereas the unusual construction octagon has a Boolean complexity of 5.

15This is the ‘bitstring version’ of the fact that ∀♦ ∧ ∃� is not equivalent to ∀�, and yet f(∀♦) ∧ f(∃�) is equivalent to
f(∀�), which was originally pointed out at the end of Section 3.
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5. The broader significance for logical geometry
In recent years it has become clear that Aristotelian diagrams can be fruitfully studied as

objects of independent mathematical and philosophical interest, giving rise to the burgeoning
field of logical geometry (Demey and Smessaert 2014, 2016b, 2017a,b, 2018a). Throughout this
paper, we have been using tools and ideas from logical geometry to shed new light on the
octagons developed by the medieval logician John Buridan. Typical examples include the notion
of unconnectedness (and its four-condition characterization) as a contemporary counterpart to
Buridan’s disparatae, the notion of an Aristotelian isomorphism to capture the ‘strong analogy’
between Buridan’s octagons, and the idea of one Aristotelian diagram (viz. the classical square
of opposition for the categorical statements) being embedded as a subdiagram inside a larger
Aristotelian diagram (viz. Buridan’s unusual construction octagon). Most importantly, Section 4
was entirely based on bitstring analysis, which is one of the key tools in logical geometry. In
the current section I will show that, vice versa, the historical discussion is also directly relevant
for the theoretical framework of logical geometry, and that it helps us to address certain open
questions in this framework.

One of the crucial insights from logical geometry concerns the interaction between Aristotelian
and Boolean structure in Aristotelian diagrams. This insight can be expressed in various ways,
depending on which aspect one wishes to emphasize:

• there exist diagrams that are Aristotelian isomorphic, but have different Boolean complexities,

• there exist diagrams that are Aristotelian isomorphic, but are represented by bitstrings of
different lengths,

• there exist diagrams that are Aristotelian isomorphic, but have Boolean closures of different
sizes,

• there exist Aristotelian diagrams that are Aristotelian isomorphic, but not Boolean isomorphic,

• there exist families of Aristotelian diagrams that have distinct Boolean subfamilies.

The most well-known example of this phenomenon concerns a certain family of Aristotelian
hexagons, viz. the so-called Jacoby-Sesmat-Blanché (JSB) hexagons (Demey and Smessaert
2017a, Subsection 5.1). This family is named after Jacoby (1950), Sesmat (1951) and Blanché
(1953, 1966), who were the first authors to study this type of hexagon (recall Footnote 11). One
can show that the family of JSB hexagons has precisely two Boolean subfamilies: some JSB
hexagons have Boolean complexity 3, while others have Boolean complexity 4. In the literature,
the former are often called ‘strong JSB hexagons’, while the latter are called ‘weak JSB hexagons’
(Pellissier 2008). Figure 5(a) shows an example of a strong JSB hexagon, which induces the tri-
partition {�p,♦p ∧ ♦¬p,�¬p} of S5; Figure 5(b) shows an example of a weak JSB hexagon,
which induces the quadripartition {�p, p ∧ ♦¬p,¬p ∧ ♦p,�¬p} of S5.16 Although the majority
of JSB hexagons that appear in the literature have Boolean complexity 3, one can certainly also
find concrete applications of JSB hexagons with Boolean complexity 4. For example, Roelandt
(2016, p. 135–136) offers several weak JSB hexagons for applications in linguistics.

Another example of this phenomenon concerns the family of Buridan octagons. One can show
that this Aristotelian family has precisely three Boolean subfamilies: some Buridan octagons have
Boolean complexity 4, others have Boolean complexity 5, and yet others have Boolean complexity
6 (Demey and Smessaert 2017a, Subsection 5.2). The differences between these three Boolean
subfamilies are also manifested within the diagrams themselves. Let’s use the generic labels from
Figure 2. In Buridan octagons with Boolean complexity 4, α is logically equivalent to β1∧β2 and
γ is logically equivalent to β1 ∨ β2. In Buridan octagons with Boolean complexity 5, exactly one
of these two equivalences holds. Finally, in Buridan octagons with Boolean complexity 6, neither

16Just like with the Buridan octagons, the Boolean differences between the strong and weak JSB hexagons are also manifested
within the diagrams themselves. Consider, for example, the three upper propositions in each of the two JSB hexagons in
Figure 5. In the strong JSB hexagon, the uppermost proposition (�p∨�¬p) is S5-equivalent to the disjunction of the two
other upper propositions (�p and �¬p). By contrast, in the weak JSB hexagon, the uppermost proposition (¬p ∨ �p) is
not S5-equivalent to the disjunction of the two other propositions (�p and �¬p).
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Figure 5. Examples of (a) a strong JSB hexagon and (b) a weak JSB hexagon.

Figure 6. (a) Buridan octagon with Boolean complexity 4 in classical propositional logic, (b) generic Buridan octagon that
has Boolean complexity 4, on the assumption that the generic Buridan octagon in Figure 2 has Boolean complexity 6.

of these equivalences holds. (Of course, we are already thoroughly familiar with the Boolean
differences between Buridan octagons of Boolean complexities 5 and 6, from Sections 2 and 3 of
this paper.)

There are some very well-known examples from the extant literature of Buridan octagons with
Boolean complexity 6. For example, as we have shown above, Buridan’s own modal octagon
has Boolean complexity 6. For a more recent example, note that Russell’s theory of definite
descriptions naturally gives rise to a Buridan octagon with Boolean complexity 6 (Demey 2017).
Similarly, there are some very well-known examples in the extant literature of Buridan octagons
with Boolean complexity 4. For example, Figure 6(a) shows a Buridan octagon for classical
propositional logic, which has Boolean complexity 4 (Smessaert and Demey 2014a); it can be
shown that this diagram induces the quadripartition {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q} of classical
propositional logic. Furthermore, Chatti and Schang (2013) and Demey and Smessaert (2016c)
construct Buridan octagons with Boolean complexity 4 in the context of their investigations
on existential import and on metalogic, respectively. In general, and using the generic labels
from before, one can prove that if the diagram in Figure 2 is a Buridan octagon with Boolean
complexity 6, then the diagram in Figure 6(b) will be a Buridan octagon with Boolean complexity
4 (note that the Buridan octagon for classical propositional logic in Figure 6(a) is indeed of this
form).

The situation is rather different with respect to the Buridan octagons with Boolean complexity
5. Such diagrams can theoretically be proved to exist; furthermore, we can ‘artificially’ construct
as many examples as we want: using the generic labels from before, one can prove that if the
diagram in Figure 2 is a Buridan octagon with Boolean complexity 6, then both of the diagrams
in Figure 7 will be Buridan octagons with Boolean complexity 5. However, until now, we did not
possess a ‘natural’ example of this Boolean subfamily, i.e. we had hitherto not found a concrete
example of a Buridan octagon with Boolean complexity 5 being used somewhere in the extant



June 18, 2018 10:55 History and Philosophy of Logic paper

14 L. Demey

Figure 7. Two generic Buridan octagons that have Boolean complexity 5, on the assumption that the generic Buridan
octagon in Figure 2 has Boolean complexity 6.

literature. This was rather unfortunate, because it seemed to suggest that the classification
of the family of Buridan octagons into three distinct Boolean subfamilies is not rooted in the
actual applications of Aristotelian diagrams. This would cast significant doubts on the wider
methodological significance of this ongoing classificatory effort in logical geometry.

However, the historical discussion in this paper has delivered — as far as I know for the
first time — a concrete example of a Buridan octagon with Boolean complexity 5, viz. John
Buridan’s very own octagon for the propositions of unusual construction. This shows that the
classification of the family of Buridan octagons into three Boolean subfamilies is not merely
a theoretical enterprise: each of these three Boolean subfamilies is inhabited by at least one
concrete application of an Aristotelian diagram found in the extant literature.

Finally, I would briefly like to reflect on the particular irony of this situation. At first sight, it
might seem odd that a natural example of a Buridan octagon with Boolean complexity 5, which
has been sought after for quite some time, is ultimately found in John Buridan himself, i.e. in
the very author after which the Aristotelian family is named. This oversight should probably
be explained by the fact that Buridan’s two other octagons (modal and oblique) have Boolean
complexity 6 (cf. Section 2 and Footnote 14), in combination with an overly näıve belief in the
‘strong analogy’ between all three of Buridan’s octagons. This combination of circumstances
might have led researchers in logical geometry (including the present author) to tacitly assume
that Buridan’s unusual construction octagon would also have Boolean complexity 6, without
ever pausing to explicitly check whether this is indeed the case.

6. Conclusion
In this paper I have shown that there are subtle Boolean differences between John Buridan’s

modal octagon and his unusual construction octagon, by making use of tools from contempo-
rary logical geometry (in particular, bitstring analysis). This interaction between historical and
theoretical work has proved to be highly fruitful for both sides. On the one hand, the powerful
tools from logical geometry allow us to draw a very precise and systematic comparison regarding
the Boolean properties of these two octagons. On the other hand, this historical investigation
has led to the conclusion that Buridan’s unusual construction octagon has Boolean complexity
5, and thus constitutes the first natural example of this particular Boolean subfamily of the
Aristotelian family of Buridan octagons.

This historical/systematic line of research will be continued in future work. For example,
Chatti (2014) has recently argued that Avicenna’s modal theory gives rise to a dodecagon,
which (modulo a difference between de re and de dicto modal propositions) can be seen as
a natural extension of Buridan’s modal octagon. In order to further substantiate this claim,
it might be interesting to use bitstring analysis to investigate the Aristotelian and Boolean
properties of this dodecagon (which Aristotelian family does this dodecagon belong to? how
many Boolean subfamilies does that Aristotelian family have, and which Boolean complexities
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do they correspond to? etc.), and to systematically compare them to those of Buridan’s modal
octagon.
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Yves Béziau and Gillman Payette, editors, The Square of Opposition. A General Framework
for Cognition, pages 99–118. Peter Lang, 2012.
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