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Central aim of Logical Geometry 4

The central aim of Logical Geometry (www.logicalgeometry.org) is

to develop an interdisciplinary framework

for the study of geometrical representations

in the analysis of logical relations.

More in particular:

we analyse the logical relations of opposition, implication and duality
between expressions in various logical, linguistic and conceptual systems.

we study abstract geometrical representations of these relations as
well as their visualisation by means of 2D and 3D diagrams.

we develop an interdisciplinary framework integrating insights from
logic, formal semantics, algebra, group theory, lattice theory, computer
graphics, cognitive psychology, information visualisation and diagrams
design.
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The background/context of Logical Geometry 5

Smessaert (1993). The Logical Geometry of Comparison and

Quanti�cation. A cross-categorial analysis of Dutch determiners and

aspectual adverbs.

World Congress on the Square of Opposition (Jean-Yves Béziau)

Square 2007: Montreux, Switzerland
Square 2010: Corte, Corsica
Square 2012: Beirut, Lebanon
Square 2014: Vatican, Roma

Alessio Moretti (2009). The geometry of logical opposition. PhD in
logic, University of Neuchâtel, Switzerland

International Conference on the Theory and Application of Diagrams

Diagrams 2012: Canterbury, UK
Diagrams 2014: Melbourne, Australia
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Bitstrings in Logical Geometry 7

Bitstrings are sequences of bits (0/1) that encode the denotations of
formulas or expressions from:

logical systems: e.g. classical propositional logic, �rst-order logic, modal
logic and public announcement logic
lexical �elds: e.g. comparative quanti�cation, subjective quanti�cation,
color terms and set inclusion relations

Each bit provides an answer to a (binary) meaningful question
(analysis of generalized quanti�ers as sets of sets).

Each question concerns a component (point or interval) of a scalar
structure creating a partition of logical space:
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Bitstrings in Logical Geometry 8

In Predicate Logic/GQT: Is R(A,B) true if
A ⊆ B yes/no
A * B and A ∩ B 6= ∅ yes/no
A ∩ B = ∅ yes/no

In Modal Logic: Is ϕ true if
p is true in all possible worlds? yes/no
p is true in some but not in all possible worlds? yes/no
p is true in no possible worlds? yes/no
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Bitstrings in Logical Geometry 9

In Modal Logic S5: Is ϕ true if:
p is true in all possible worlds? yes/no
p is true in the actual world but not in all possible worlds? yes/no
p is true in some possible worlds but not in the actual world? yes/no
p is true in no possible worlds? yes/no

In Propositional Logic: Is ϕ true if:
p is true and q is true? yes/no
p is true and q is false? yes/no
p is false and q is true? yes/no
p is false and q is false? yes/no
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Bitstrings in Logical Geometry 10

23 = 8 bitstrings of length 3  24 = 16 bitstrings of length 4
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Aristotelian relations and squares 12

Informally, two formulas are:

contradictory i� they cannot be true together and cannot be false together
contrary i� they cannot be true together, but can be false together
subcontrary i� they can be true together, but cannot be false together
in subalternation i� the �rst logically entails the second, but not vice versa

Running example: the modal logic S5:

classical square degenerate square
2 × L1-L3 2 × L2-L2
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Aristotelian relations and bitstrings 13

Formally (relative to a logical system S), two formulas ϕ,ψ are
contradictory i� S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ)
contrary i� S |= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ)
subcontrary i� S 6|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ)
in subalternation i� S |= ϕ→ ψ and S 6|= ψ → ϕ

In terms of bitstrings, two bitstrings b1 and b2 are
contradictory i� b1 ∧ b2 = 0000 and b1 ∨ b2 = 1111
contrary i� b1 ∧ b2 = 0000 and b1 ∨ b2 6= 1111
subcontrary i� b1 ∧ b2 6= 0000 and b1 ∨ b2 = 1111
in subalternation i� b1 ∧ b2 = b1 and b1 ∨ b2 6= b1

ϕ and ψ stand in some Aristotelian relation (de�ned for S) i�
β(ϕ) and β(ψ) stand in that same relation (de�ned for bitstrings).

β maps formulas from S to bitstrings, preserving Aristotelian structure
(Representation Theorem for �nite Boolean algebras)
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Aristotelian hexagons 14

Jacoby-Sesmat-Blanché Sherwood-Czezowski
hexagon hexagon
2 × L1-L3 2 × L1-L3
1 × L2-L2 1 × L2-L2
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Aristotelian octagons 15

Béziau octagon Buridan octagon
2 × L1-L3 2 × L1-L3
2 × L2-L2 2 × L2-L2
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Logical Geometry and Formal Linguistics 17

formation rules
⇓

expression ⇒ syntactic representation ⇒ world/mind
⇓

syntactic properties

formation rules
⇓

expression ⇒ semantic representation ⇒ world/mind
⇓

semantic properties
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Logical Geometry and Formal Semantics 18

formation rules
⇓

expression ⇒ Montague Intensional Type Logic ⇒ world/mind
Generalized Quanti�er Theory

⇓
semantic properties

formation rules
⇓

sets of expressions ⇒ Discourse Representation ⇒ world/mind
Structures (DRSs)

⇓
semantic properties/relations
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Logical Geometry and Formal Semantics 19

formation rules
⇓

expression ⇒ Bitstring Representation ⇒ world/mind
⇓

semantic properties

formation rules
⇓

sets of expressions ⇒ Aristotelian Diagrams ⇒ world/mind
⇓

semantic properties/relations
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Problems with the Aristotelian geometry 22

recall the Aristotelian geometry: ϕ and ψ are said to be

contradictory i� S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ)
contrary i� S |= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ)
subcontrary i� S 6|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ)
in subalternation i� S |= ϕ→ ψ and S 6|= ψ → ϕ

problems with the Aristotelian geometry:

not mutually exclusive: e.g. ⊥ and p are contrary and subaltern
(problem disappears if we restrict to contingent formulas)

not exhaustive: e.g. p and ♦p ∧ ♦¬p are in no Arist. relation at all
(if ϕ is contingent, then ϕ is in no Arist. relation to itself)

conceptual confusion: true/false together vs truth propagation
I `together'  symmetrical relations (undirected)
I `propagation'  asymmetrical relations (directed)
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Two new geometries (sets of logical relations) 24

the opposition geometry (OG): ϕ and ψ are
contradictory i� S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ)
contrary i� S |= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ)
subcontrary i� S 6|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ)
non-contradictory i� S 6|= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ)

the implication geometry (IG): ϕ and ψ are in
bi-implication i� S |= ϕ→ ψ and S |= ψ → ϕ
left-implication i� S |= ϕ→ ψ and S 6|= ψ → ϕ
right-implication i� S 6|= ϕ→ ψ and S |= ψ → ϕ
non-implication i� S 6|= ϕ→ ψ and S 6|= ψ → ϕ

opposition relations: being true/false together ϕ ∧ ψ and ¬ϕ ∧ ¬ψ

implication relations: truth propagation ϕ→ ψ and ψ → ϕ
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Motivating the new geometries 25

OG and IG jointly solve the problems of the Aristotelian geometry:

each pair of formulas stands in exactly one opposition relation
each pair of formulas stands in exactly one implication relation
no more conceptual confusion

conceptual independence, yet clear relationship (symmetry breaking):
CD(ϕ,ψ) ⇔ BI(ψ,¬ϕ)
C(ϕ,ψ) ⇔ LI(ψ,¬ϕ)
SC(ϕ,ψ) ⇔ RI(ψ,¬ϕ)
NCD(ϕ,ψ) ⇔ NI(ψ,¬ϕ)

Correia: two philosophical traditions in Aristotle scholarship

square as a theory of negation commentaries on De Interpretatione
square as a theory of consequence commentaries on Prior Analytics
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Information levels of logical relations 27

informativity of a relation holding between ϕ and ψ is inversely
correlated with the number of states (models) it is compatible with

informativity of the opposition and implication relations:
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Informativity of the Aristotelian Geometry 28

Aristotelian geometry: hybrid between

opposition geometry: contradiction, contrariety, subcontrariety
implication geometry: left-implication (subalternation)

these relations are highly informative (in their geometries)
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Unconnectedness 29

given any two formulas:

they stand in exactly one opposition relation R
they stand in exactly one implication relation S

informative relation in OG combines with uninformative relation in IG
and vice versa

exception = NCD + NI = unconnectedness (logical independence)

no Aristotelian relation at all (non-exhaustiveness of AG)
combination of the two least informative relations
Aristotelian gap = information gap

Introduction to Logical Geometry � H. Smessaert & L. Demey



Unconnectedness in Aristotelian Diagrams 30

no unconnectedness in the classical Aristotelian square

no unconnectedness in the Jacoby-Sesmat-Blanché hexagon
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Unconnectedness in Aristotelian Diagrams 31

unconnectedness in the Béziau octagon

e.g. p and ♦p ∧ ♦¬p are unconnected
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Overview Information 32

logical geometry: Aristotelian square of oppositions and its extensions

the Aristotelian square is highly informative:

Aristotelian geometry is hybrid: maximize informativity
⇒ applies to all Aristotelian diagrams

avoid unconnectedness: minimize uninformativity
⇒ some Aristotelian diagrams succeed better than others

I classical square, JSB hexagon, SC hexagon don't have unconnectedness
I Béziau octagon (and many other diagrams) do have unconnectedness

Q: what about the JSB hexagon, SC hexagon, etc.?

equally informative as the square
yet less widely known. . .

A: requires yet another geometry: duality
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Aristotelian subdiagrams 35

3 squares embedded in (strong) Jacoby-Sesmat-Blanché hexagon (JSB)

3 squares embedded in Sherwood-Czezowski hexagon (SC)

Introduction to Logical Geometry � H. Smessaert & L. Demey



Aristotelian subdiagrams 36

4 hexagons embedded in Buridan octagon
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Aristotelian subdiagrams in RDH 37

Internal structure of bigger/3D Aristotelian diagrams ? Some initial results:

4 weak JSB-hexagons in logical cube (Moretti-Pellissier)

6 strong JSB hexagons in bigger 3D structure with 14 formulas/vertices

tetra-hexahedron (Sauriol)
tetra-icosahedron (Moretti-Pellissier)
nested tetrahedron (Lewis, Dubois-Prade)
rhombic dodecahedron = RDH (Smessaert-Demey) => joint work

Greater complexity of RDH  exhaustive analysis of internal structure ??
Main aim of this talk  tools and techniques for such an analysis

examine larger substructures (octagon, decagon, dodecagon, ...)

distinguish families of substructures (strong JSB, weak JSB, ...)

establish the exhaustiveness of the typology
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Rhombic Dodecahedron (RDH) 39

cube + octahedron = cuboctahedron
dual
=⇒ rhombic

dodecahedron

Platonic Platonic Archimedean Catalan
6 faces 8 faces 14 faces 12 faces

8 vertices 6 vertices 12 vertices 14 vertices
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Bitstrings for RDH 40

14 vertices of RDH decorated with 14 bitstrings of length 4
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Bitstrings for RDH 41

cube = 4 × L1 + 4 × L3 / octahedron = 6 × L2 / center = L0 + L4
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Bitstrings for RDH 42

Bitstrings have been used to encode

logical systems: e.g. classical propositional logic, �rst-order logic,
modal logic and public announcement logic

lexical �elds: e.g. comparative quanti�cation, subjective quanti�cation,
color terms and set inclusion relations

Contradiction relation is visualized using the central symmetry of RDH:

contradictory bitstrings (e.g. 1100 and 0011) occupy diametrically
opposed vertices

the negation of a bitstring is located at a maximal (Euclidean) distance
from that bitstring.

nearly all Aristotelian diagrams discussed in the literature observe
central symmetry (�contradictories are diagonals�)
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σn-structures 44

Bitstrings/formulas come in pairs of contradictories (PCD)

Key notion in describing RDH is σn-structure.

A σn-structure consists of n PCDs

A σn-structure is visualized by means of a centrally symmetrical diagram

Examples

a square has 2 PCDs ⇒ σ2-structure
a hexagon has 3 PCDs ⇒ σ3-structure
an octagon has 4 PCDs ⇒ σ4-structure
a cube has 4 PCDs ⇒ σ4-structure

Remarks

1 σ-structure may correspond to di�erent σ-diagrams:

alternative 2D visualisations
2D versus 3D representations

All σ-structures have an even number of formulas/bitstrings

Nearly all Aristotelian diagrams in the literature are σ-structures
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σn-structures 45

Original question of Aristotelian subdiagrams (�How many smaller diagrams
inside bigger diagram?�) can now be reformulated in terms of σ-structures.

For n ≤ k, the nummer of σn-structures embedded in a σk-structure
can be calculated as the number of combinations of n PCDs out of k by
means of the simple combinatorial formula:

(
k
n

)
= k!

n!(k−n)!

This combinatorial technique  recover well-known results:

#squares (σ2) inside a hexagon (σ3) is
(
3
2

)
: 3!

2!(1)! =
6
2 = 3

#hexagons (σ3) inside octagon (σ4) is
(
4
3

)
: 4!

3!(1)! =
24
6 = 4

This combinatorial technique  obtain new results for RDH:

RDH contains 14 vertices, hence 7 PCDs  RDH = σ7-structure
Calculate the number of σn-structures inside a σ7-structure as the
number of combinations of n PCDs out of 7:

(
7
n

)
= 7!

n!(7−n)!
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σn-structures: overview 46

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7(
7
0

) (
7
1

) (
7
2

) (
7
3

) (
7
4

) (
7
5

) (
7
6

) (
7
7

)
7!

0!(7)!
7!

1!(6)!
7!

2!(5)!
7!

3!(4)!
7!

4!(3)!
7!

5!(2)!
7!

6!(1)!
7!

7!(0)!

5040
1×5040

5040
1×720

5040
2×120

5040
6×24

5040
24×6

5040
120×2

5040
720×1

5040
5040×1

1 7 21 35 35 21 7 1

3 squares in 1 JSB × 6 JSB in RDH = 18 squares in RDH.
Remaining 3 ?? Unconnected/degenerate squares

6 strong JSB + 4 weak JSB = 10 hexagons in RDH.
Remaining 25 ?? Sherwood-Czezowski. Others ? Unconnected4/12.

symmetry/mirror image ? Complementarity:
#σ0 = #σ7, #σ1 = #σ6, #σ2 = #σ5, #σ3 = #σ4,
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Families of σn-structures: the CO-perspective 47

rhombic dodecahedron (RDH) = cube (C) + octahedron (O)
σ7 = σ4 + σ3

7 PCDs = 4 PCDs L1-L3 + 3 PCDs L2-L2

Construct a principled typology of families of σ-structures inside RDH.

σn = n out of the 7 PCDs of RDH

σn = [k out of the 4 PCDs of C] + [` out of the 3 PCDs of O]

CO-perspective: every class of σn-structures can be subdivided into
families of the form CkOl, for 0 ≤ k ≤ 4; 0 ≤ ` ≤ 3 and k + ` = n.

For example, the cube C is C4O0, and the octahedron O is C0O3.

The number of CkO`-structures inside RDH (C4O3) can be calculated
as

(
4
k

)(
3
`

)
.
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Families of σ2-structures: the CO-perspective 48

σ2 = C2O0 + C1O1 + C0O2(
7
2

) (
4
2

)(
3
0

) (
4
1

)(
3
1

) (
4
0

)(
3
2

)
21 = 6 + 12 + 3

squares classical classical degenerated
balanced unbalanced (balanced)

2×L1/2×L3 1×L1/2×L2/1×L3 4×L2

Introduction to Logical Geometry � H. Smessaert & L. Demey



Families of σ3-structures: the CO-perspective 49

σ3 = C0O3 + C3O0 + C1O2 + C2O1(
7
3

) (
4
0

)(
3
3

) (
4
3

)(
3
0

) (
4
1

)(
3
2

) (
4
2

)(
3
1

)
35 = 1 + 4 + 12 + 18

hexagons degener. weak degener. strong JSB
U12 JSB U4 Sher-Czez
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Families of σ3-structures: the isomorphism perspective 50

18 × C2O1 = 6 × C2O1a + 12 × C2O1b
strong JSB Sherwood-Czezowski

CO-perspective: no distinction strong JSB vs Sherwood-Czezowski

isomorphism perspective: no distinction strong JSB vs weak JSB
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Families of σn-structures: overview 51

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7
C0O3 C4O0

1 1
C1O0 C0O2 C3O0 C1O3 C4O1 C3O3

4 3 4 4 3 4
C0O0 C0O1 C2O0 C2O1a C2O2a C2O3 C4O2 C4O3

1 3 6 6 6 6 3 1
C1O1 C2O1b C2O2b C3O2

12 12 12 12
C1O2 C3O1

12 12

1 7 21 35 35 21 7 1
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The Rhombic Dodecahedron of Oppositions RDH
(Families of) Sigma-structures: the CO-perspective
Complementarities between families of Sigma-structures

4 Conclusions
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Fundamental complementarity between σ-structures inside RDH

|σn| = |σ7−n|
|CkO`| = |C4−kO3−`|

C4O0 C0O3 C4O3
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C2O1a C2O2a C4O3

strong JSB Buridan rhombic
hexagon octagon dodecahedron

rhombicube
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structure subtype N subtype structure

σ0 C0O0 1 C4O3 σ7
σ1 C1O0 4 C3O3 σ6

C0O1 3 C4O2

C0O2 3 C4O1

σ2 C2O0 6 C2O3 σ5
C1O1 12 C3O2

C0O3 1 C4O0

C3O0 4 C1O3

σ3 C2O1a 6 C2O2a σ4
C2O1b 12 C2O2b
C1O2 12 C3O1
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 The logical geometry of rhombic dodecahedron RDH

 Typology of Aristotelian subdiagrams of RDH

 Tools/techniques for exhaustive analysis of internal structure of RDH

de�ne σn-structure = n out of the 7 PCDs of RDH

distinguish families of substructures = CkO`-perspective:
σn = [k out of the 4 PCDs of C] + [` out of the 3 PCDs of O]

establish the exhaustiveness of the typology  complementarity

 Frame of reference for classifying Aristotelian diagrams in the literature
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σ1 C1O0 Brown 1984

C0O1 Demey 2012

C0O2 Brown 1984, Béziau 2012

σ2 C2O0 Fitting & Mendelsohn 1998, McNamara 2010, Lenzen 2012

C1O1 Luzeaux, Sallantin & Dartnell 2008, Moretti 2009

C0O3 Moretti 2009

C2O1a Sesmat 1951, Blanché 1966, Béziau 2012, Dubois & Prade 2013

σ3 C2O1b Czezowski 1955, Khomskii 2012, Chatti & Schang 2013

C1O2 Seuren 2013, Seuren & Jaspers 2014, Smessaert & Demey 2014

C3O0 Pellissier 2008, Moretti 2009, Moretti 2012

C1O3

C3O1

σ4 C2O2b Béziau 2003, Smessaert & Demey 2014

C2O2a Hughes 1987, Read 2012, Seuren 2012

C4O0 Moretti 2009, Chatti & Schang 2013, Dubois & Prade 2013

C3O2 Seuren & Jaspers 2014

σ5 C2O3

C4O1 Blanché 1966, Joerden & Hruschka 1987, Wessels 2002

σ6 C4O2 Béziau 2003, Moretti 2009, Moretti 2010

C3O3

σ7 C4O3 Sauriol 1968, Moretti 2009, Smessaert 2009, Dubois & Prade 2013
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1 General introduction
Central aim of Logical Geometry
Bitstrings in Logical Geometry
Aristotelian relations and diagrams
Logical Geometry and Formal Semantics

2 Information in Aristotelian Diagrams
Problems with the Aristotelian geometry
Two new geometries
Information levels of logical relations and Unconnectedness

3 The Logical Geometry of the Rhombic Dodecahedron
Aristotelian subdiagrams
The Rhombic Dodecahedron of Oppositions RDH
(Families of) Sigma-structures: the CO-perspective
Complementarities between families of Sigma-structures

4 Conclusions
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high-level overview of logical geometry

tension between two considerations:

the square is just one of many Aristotelian diagrams (typology)
the square is special after all (very informative)

tension between symmetry and asymmetry  work on lexicalisation
patterns by Dany Jaspers (and Pieter Seuren)

ongoing work:

concrete case studies: many/few (��lling in the gaps in the classi�cation�)
alternative presentations for Aristotelian diagrams (Square 2014)
relation between Aristotelian diagrams and other logic diagrams

I duality diagrams (Diagrams 2012)
I Hasse diagrams (Diagrams 2014)

graded Aristotelian relations
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Thank you!

More info: www.logicalgeometry.org

Introduction to Logical Geometry � H. Smessaert & L. Demey


	General introduction
	Central aim of Logical Geometry
	Bitstrings in Logical Geometry
	Aristotelian relations and diagrams
	Logical Geometry and Formal Semantics

	Information in Aristotelian Diagrams
	Problems with the Aristotelian geometry
	Two new geometries
	Information levels of logical relations and Unconnectedness

	The Logical Geometry of the Rhombic Dodecahedron
	Aristotelian subdiagrams
	The Rhombic Dodecahedron of Oppositions RDH
	(Families of) Sigma-structures: the CO-perspective
	Complementarities between families of Sigma-structures

	Conclusions

