KU LEUVEN

Hans Smessaert and Lorenz Demey

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions

Central aim of Logical Geometry

The central aim of Logical Geometry (www.logicalgeometry.org) is

- to develop an interdisciplinary framework
- for the study of geometrical representations
- in the analysis of logical relations.

More in particular:

- we analyse the logical relations of opposition, implication and duality between expressions in various logical, linguistic and conceptual systems.
- we study abstract geometrical representations of these relations as well as their visualisation by means of 2D and 3D diagrams.
- we develop an interdisciplinary framework integrating insights from logic, formal semantics, algebra, group theory, lattice theory, computer graphics, cognitive psychology, information visualisation and diagrams design.
- Smessaert (1993). The Logical Geometry of Comparison and Quantification. A cross-categorial analysis of Dutch determiners and aspectual adverbs.
- World Congress on the Square of Opposition (Jean-Yves Béziau)
- Square 2007: Montreux, Switzerland
- Square 2010: Corte, Corsica
- Square 2012: Beirut, Lebanon
- Square 2014: Vatican, Roma
- Alessio Moretti (2009). The geometry of logical opposition. PhD in logic, University of Neuchâtel, Switzerland
- International Conference on the Theory and Application of Diagrams
- Diagrams 2012: Canterbury, UK
- Diagrams 2014: Melbourne, Australia

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions

Bitstrings in Logical Geometry

- Bitstrings are sequences of bits $(0 / 1)$ that encode the denotations of formulas or expressions from:
- logical systems: e.g. classical propositional logic, first-order logic, modal logic and public announcement logic
- lexical fields: e.g. comparative quantification, subjective quantification, color terms and set inclusion relations
- Each bit provides an answer to a (binary) meaningful question (analysis of generalized quantifiers as sets of sets).
- Each question concerns a component (point or interval) of a scalar structure creating a partition of logical space:

Bitstrings in Logical Geometry

- In Predicate Logic/GQT: Is $\mathrm{R}(\mathrm{A}, \mathrm{B})$ true if
$A \subseteq B$
$A \nsubseteq B$ and $A \cap B \neq \emptyset$ yes/no
$A \cap B=\emptyset \quad$ yes/no
- In Modal Logic: Is φ true if
p is true in all possible worlds? yes/no
p is true in some but not in all possible worlds? yes/no
p is true in no possible worlds? yes/no

Modal Logic	GQT	level $1 / 0$	level $2 / 3$	GQT	Modal Logic
necessary $(\square p)$	all	100	011	not all	not necessary $(\neg \square p)$
contingent $(\neg p \wedge \diamond p)$	some but not all	010	101	no or all	not contingent $(\square p \vee \neg \diamond p)$
impossible $(\neg \diamond p)$	no	001	110	some	possible $(\diamond p)$
contradiction $(\square p \wedge \neg \square p)$	some and no	000	111	some or no	tautology $(\square p \vee \neg \square p)$

- In Modal Logic S5: Is φ true if:
p is true in all possible worlds?
p is true in the actual world but not in all possible worlds? yes/no
p is true in some possible worlds but not in the actual world? yes/no
p is true in no possible worlds?
- In Propositional Logic: Is φ true if:
p is true and q is true? yes/no
p is true and q is false? yes/no
p is false and q is true? yes/no
p is false and q is false? yes/no

$2^{3}=8$ bitstrings of length $3 \rightsquigarrow 2^{4}=16$ bitstrings of length 4

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level3	Propositional Logic	Modal Logic S5
$\square p$	$p \wedge q$	1000	0111	$\neg(p \wedge q)$	$\neg \square p$
$\neg \square p \wedge p$	$\neg(p \neg q)$	0100	1011	$p \rightarrow q$	$\square p \vee \neg p$
$\diamond p \wedge \neg p$	$\neg(p \leftarrow q)$	0010	1101	$p \leftarrow q$	$\neg \diamond p \vee p$
$\neg \diamond p$	$\neg(p \vee q)$	0001	1110	$p \vee q$	$\diamond p$

Modal Logic S5	Propositional Logic	bitstrings level 2/0	bitstrings level 2/4	Propositional Logic	Modal Logic S5
p	p	1100	0011	$\neg p$	$\neg p$
$\square p \vee(\diamond p \wedge \neg p)$	q	1010	0101	$\neg q$	$\neg \diamond p \vee(\neg \square p \wedge p)$
$\square p \vee \neg \diamond p$	$p \leftrightarrow q$	1001	0110	$\neg(p \mapsto q)$	$\neg \square p \wedge \diamond p$
$\square p \wedge \neg \square p$	$p \wedge \neg p$	0000	1111	$p \vee \neg p$	$\square p \vee \neg p$

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions
- Informally, two formulas are:
- contradictory iff they cannot be true together and cannot be false together
- contrary iff they cannot be true together, but can be false together
- subcontrary iff they can be true together, but cannot be false together
- in subalternation iff the first logically entails the second, but not vice versa
- Running example: the modal logic S5:

- Formally (relative to a logical system S), two formulas φ, ψ are contradictory iff $\quad \mathrm{S} \models \neg(\varphi \wedge \psi) \quad$ and $\quad \mathrm{S} \vDash \neg(\neg \varphi \wedge \neg \psi)$ contrary iff $\quad \mathrm{S} \models \neg(\varphi \wedge \psi) \quad$ and $\quad \mathrm{S} \not \vDash \neg(\neg \varphi \wedge \neg \psi)$ subcontrary in subalternation
iff $\quad \mathrm{S} \not \vDash \neg(\varphi \wedge \psi) \quad$ and $\quad \mathrm{S} \vDash \neg(\neg \varphi \wedge \neg \psi)$
iff $\quad \mathrm{S} \models \varphi \rightarrow \psi \quad$ and $\quad \mathrm{S} \not \vDash \psi \rightarrow \varphi$
- In terms of bitstrings, two bitstrings b_{1} and b_{2} are contradictory iff $b_{1} \wedge b_{2}=0000$ and $b_{1} \vee b_{2}=1111$ contrary iff $b_{1} \wedge b_{2}=0000$ and $b_{1} \vee b_{2} \neq 1111$ subcontrary iff $b_{1} \wedge b_{2} \neq 0000$ and $b_{1} \vee b_{2}=1111$ in subalternation iff $b_{1} \wedge b_{2}=b_{1} \quad$ and $\quad b_{1} \vee b_{2} \neq b_{1}$
- φ and ψ stand in some Aristotelian relation (defined for S) iff $\beta(\varphi)$ and $\beta(\psi)$ stand in that same relation (defined for bitstrings).
- β maps formulas from S to bitstrings, preserving Aristotelian structure (Representation Theorem for finite Boolean algebras)

Jacoby-Sesmat-Blanché hexagon

$$
\begin{aligned}
& 2 \times \mathrm{L} 1-\mathrm{L} 3 \\
& 1 \times \mathrm{L} 2-\mathrm{L} 2
\end{aligned}
$$

Sherwood-Czezowski hexagon
$2 \times$ L1-L3
$1 \times$ L2-L2

Béziau octagon

$$
\begin{aligned}
& 2 \times \mathrm{L} 1-\mathrm{L} 3 \\
& 2 \times \mathrm{L} 2-\mathrm{L} 2
\end{aligned}
$$

Buridan octagon

$$
\begin{aligned}
& 2 \times \mathrm{L} 1-\mathrm{L} 3 \\
& 2 \times \mathrm{L} 2-\mathrm{L} 2
\end{aligned}
$$

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions

formation rules
\Downarrow

expression $\Rightarrow \quad$| Bitstring Representation |
| :---: |
| \Downarrow |
| semantic properties |$\quad \Rightarrow$ world/mind

formation rules
\Downarrow
sets of expressions \Rightarrow Aristotelian Diagrams $\quad \Rightarrow$ world/mind
semantic properties/relations

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions

Problems with the Aristotelian geometry

- recall the Aristotelian geometry: φ and ψ are said to be

contradictory	iff	$S \models \neg(\varphi \wedge \psi)$	and	$S \models \neg(\neg \varphi \wedge \neg \psi)$
contrary	iff	$S \models \neg(\varphi \wedge \psi)$	and	$S \not \models \neg(\neg \varphi \wedge \neg \psi)$
subcontrary	iff	$S \not \models \neg(\varphi \wedge \psi)$	and	$S \models \neg(\neg \varphi \wedge \neg \psi)$
in subalternation	iff	$S \models \varphi \rightarrow \psi$	and	$S \not \models \psi \rightarrow \varphi$

- problems with the Aristotelian geometry:
- not mutually exclusive: e.g. \perp and p are contrary and subaltern (problem disappears if we restrict to contingent formulas)
- not exhaustive: e.g. p and $\diamond p \wedge \diamond \neg p$ are in no Arist. relation at all (if φ is contingent, then φ is in no Arist. relation to itself)
- conceptual confusion: true/false together vs truth propagation
- 'together' \rightsquigarrow symmetrical relations (undirected)
- 'propagation' \rightsquigarrow asymmetrical relations (directed)

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions
- the opposition geometry (OG): φ and ψ are

contradictory	iff	$S \models \neg(\varphi \wedge \psi)$	and	$S \models \neg(\neg \varphi \wedge \neg \psi)$
contrary	iff	$S \models \neg(\varphi \wedge \psi)$	and	$S \nLeftarrow \neg(\neg \varphi \wedge \neg \psi)$
subcontrary	iff	$S \not \models \neg(\varphi \wedge \psi)$	and	$S \models \neg(\neg \varphi \wedge \neg \psi)$
non-contradictory	iff	$S \not \models \neg(\varphi \wedge \psi)$	and	$S \nLeftarrow \neg \neg(\neg \varphi \wedge \neg \psi)$

- the implication geometry (IG): φ and ψ are in

bi-implication	iff	$\mathrm{S} \models \varphi \rightarrow \psi$	and	$\mathrm{S} \vDash \psi \rightarrow \varphi$
left-implication	iff	$\mathrm{S} \models \varphi \rightarrow \psi$	and	$\mathrm{S} \not \vDash \psi \rightarrow \varphi$
right-implication	iff	$\mathrm{S} \not \models \varphi \rightarrow \psi$	and	$\mathrm{S} \vDash \psi \rightarrow \varphi$
non-implication	iff	$\mathrm{S} \not \models \varphi \rightarrow \psi$	and	$\mathrm{S} \nLeftarrow \psi \rightarrow \varphi$

- opposition relations: being true/false together
$\varphi \wedge \psi$ and $\neg \varphi \wedge \neg \psi$
- implication relations: truth propagation
$\varphi \rightarrow \psi$ and $\psi \rightarrow \varphi$

Motivating the new geometries

- OG and IG jointly solve the problems of the Aristotelian geometry:
- each pair of formulas stands in exactly one opposition relation
- each pair of formulas stands in exactly one implication relation
- no more conceptual confusion
- conceptual independence, yet clear relationship (symmetry breaking):

$\mathrm{CD}(\varphi, \psi)$	\Leftrightarrow	$\mathrm{BI}(\psi, \neg \varphi)$
$\mathrm{C}(\varphi, \psi)$	\Leftrightarrow	$\mathrm{LI}(\psi, \neg \varphi)$
$\mathrm{SC}(\varphi, \psi)$	\Leftrightarrow	$\operatorname{RI}(\psi, \neg \varphi)$
$\mathrm{NCD}(\varphi, \psi)$	\Leftrightarrow	$\mathrm{NI}(\psi, \neg \varphi)$

- Correia: two philosophical traditions in Aristotle scholarship
- square as a theory of negation commentaries on De Interpretatione
- square as a theory of consequence commentaries on Prior Analytics

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions

Information levels of logical relations

- informativity of a relation holding between φ and ψ is inversely correlated with the number of states (models) it is compatible with
- informativity of the opposition and implication relations:

Informativity of the Aristotelian Geometry

- Aristotelian geometry: hybrid between
- opposition geometry: contradiction, contrariety, subcontrariety
- implication geometry: left-implication (subalternation)
- these relations are highly informative (in their geometries)

- given any two formulas:
- they stand in exactly one opposition relation R
- they stand in exactly one implication relation S
- informative relation in OG combines with uninformative relation in IG and vice versa
- exception $=$ NCD $+\mathrm{NI}=$ unconnectedness (logical independence)
- no Aristotelian relation at all (non-exhaustiveness of AG)
- combination of the two least informative relations
- Aristotelian gap $=$ information gap

- no unconnectedness in the classical Aristotelian square

- no unconnectedness in the Jacoby-Sesmat-Blanché hexagon

- unconnectedness in the Béziau octagon
- e.g. p and $\diamond p \wedge \diamond \neg p$ are unconnected

- logical geometry: Aristotelian square of oppositions and its extensions
- the Aristotelian square is highly informative:
- Aristotelian geometry is hybrid: maximize informativity \Rightarrow applies to all Aristotelian diagrams
- avoid unconnectedness: minimize uninformativity \Rightarrow some Aristotelian diagrams succeed better than others
- classical square, JSB hexagon, SC hexagon don't have unconnectedness
- Béziau octagon (and many other diagrams) do have unconnectedness
- Q: what about the JSB hexagon, SC hexagon, etc.?
- equally informative as the square
- yet less widely known. .
- A: requires yet another geometry: duality

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotellan Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions

3 squares embedded in (strong) Jacoby-Sesmat-Blanché hexagon (JSB)

3 squares embedded in Sherwood-Czezowski hexagon (SC)

0111

4 hexagons embedded in Buridan octagon

Introduction to Logical Geometry - H. Smessaert \& L. Demey

Internal structure of bigger/3D Aristotelian diagrams ? Some initial results:

- 4 weak JSB-hexagons in logical cube (Moretti-Pellissier)
- 6 strong JSB hexagons in bigger 3D structure with 14 formulas/vertices
- tetra-hexahedron (Sauriol)
- tetra-icosahedron (Moretti-Pellissier)
- nested tetrahedron (Lewis, Dubois-Prade)
- rhombic dodecahedron $=$ RDH (Smessaert-Demey) $=>$ joint work

Greater complexity of RDH exhaustive analysis of internal structure ?? Main aim of this talk \rightsquigarrow tools and techniques for such an analysis

- examine larger substructures (octagon, decagon, dodecagon, ...)
- distinguish families of substructures (strong JSB, weak JSB, ...)
- establish the exhaustiveness of the typology

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions
cube + octahedron $=$ cuboctahedron $\stackrel{\text { dual }}{\Longrightarrow}$
Platonic

6 faces
8 vertices

Platonic
8 faces
6 vertices

Archimedean
14 faces
12 vertices
dodecahedron
rhombic Catalan 12 faces 14 vertices

Introduction to Logical Geometry - H. Smessaert \& L. Demey
KULEUVEN

14 vertices of RDH decorated with 14 bitstrings of length 4

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level3	Propositional Logic	Modal Logic S5
$\square p$	$p \wedge q$	1000	0111	$\neg(p \wedge q)$	$\neg \square p$
$\neg \square p \wedge p$	$\neg(p \rightarrow q)$	0100	1011	$p \rightarrow q$	$\square p \vee \neg p$
$\diamond p \wedge \neg p$	$\neg(p \neg q)$	0010	1101	$p \neg q$	$\neg \diamond p \vee p$
$\neg \diamond p$	$\neg(p \vee q)$	0001	1110	$p \vee q$	$\diamond p$

Modal Logic S5	Propositional Logic	bitstrings level 2/0	bitstrings level 2/4	Propositional Logic	Modal Logic S5
p	p	1100	0011	$\neg p$	$\neg p$
$\square p \vee(\diamond p \wedge \neg p)$	q	1010	0101	$\neg q$	$\neg \diamond p \vee(\neg \square p \wedge p)$
$\square p \vee \neg \diamond p$	$p \leftrightarrow q$	1001	0110	$\neg(p \mapsto q)$	$\neg \square p \wedge \diamond p$
$\square p \wedge \neg \square p$	$p \wedge \neg p$	0000	1111	$p \vee \neg p$	$\square p \vee \neg p$

cube $=4 \times \mathrm{L} 1+4 \times \mathrm{L} 3 /$ octahedron $=6 \times \mathrm{L} 2 /$ center $=\mathrm{L} 0+\mathrm{L} 4$

Introduction to Logical Geometry - H. Smessaert \& L. Demey

Bitstrings have been used to encode

- logical systems: e.g. classical propositional logic, first-order logic, modal logic and public announcement logic
- lexical fields: e.g. comparative quantification, subjective quantification, color terms and set inclusion relations

Contradiction relation is visualized using the central symmetry of RDH:

- contradictory bitstrings (e.g. 1100 and 0011) occupy diametrically opposed vertices
- the negation of a bitstring is located at a maximal (Euclidean) distance from that bitstring.
- nearly all Aristotelian diagrams discussed in the literature observe central symmetry ("contradictories are diagonals")

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions

Bitstrings/formulas come in pairs of contradictories (PCD) Key notion in describing RDH is $\sigma_{\mathbf{n}}$-structure.

- A σ_{n}-structure consists of n PCDs
- A σ_{n}-structure is visualized by means of a centrally symmetrical diagram
- Examples a square has $2 \mathrm{PCDs} \Rightarrow \sigma_{2}$-structure a hexagon has 3 PCDs $\Rightarrow \sigma_{3}$-structure an octagon has $4 \mathrm{PCDs} \Rightarrow \sigma_{4}$-structure a cube has 4 PCDs $\quad \Rightarrow \quad \sigma_{4}$-structure
Remarks
- 1σ-structure may correspond to different σ-diagrams:
- alternative 2D visualisations
- 2D versus 3D representations
- All σ-structures have an even number of formulas/bitstrings
- Nearly all Aristotelian diagrams in the literature are σ-structures

Original question of Aristotelian subdiagrams ("How many smaller diagrams inside bigger diagram?") can now be reformulated in terms of σ-structures.

- For $\mathrm{n} \leq \mathrm{k}$, the nummer of σ_{n}-structures embedded in a σ_{k}-structure can be calculated as the number of combinations of n PCDs out of k by means of the simple combinatorial formula: $\binom{k}{n}=\frac{k!}{n!(k-n)!}$
- This combinatorial technique \rightsquigarrow recover well-known results:
- \#squares $\left(\sigma_{2}\right)$ inside a hexagon $\left(\sigma_{3}\right)$ is $\binom{3}{2}: \frac{3!}{2!(1)!}=\frac{6}{2}=3$
- \#hexagons $\left(\sigma_{3}\right)$ inside octagon $\left(\sigma_{4}\right)$ is $\binom{4}{3}: \frac{4!}{3!(1)!}=\frac{24}{6}=4$
- This combinatorial technique \rightsquigarrow obtain new results for RDH:
- RDH contains 14 vertices, hence 7 PCDs $\rightsquigarrow \mathrm{RDH}=\sigma_{7}$-structure
- Calculate the number of σ_{n}-structures inside a σ_{7}-structure as the number of combinations of n PCDs out of 7: $\binom{7}{n}=\frac{7!}{n!(7-n)!}$

σ_{0}	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}	σ_{7}
$\binom{7}{0}$	$\binom{7}{1}$	$\binom{7}{2}$	$\binom{7}{3}$	$\binom{7}{4}$	$\binom{7}{5}$	$\binom{7}{6}$	$\binom{7}{7}$
$\frac{7!}{0!(7)!}$	$\frac{7!}{1!(6)!}$	$\frac{7!}{2!(5)!}$	$\frac{7!}{3!(4)!}$	$\frac{7!}{4!(3)!}$	$\frac{7!}{5!(2)!}$	$\frac{7!}{6!(1)!}$	$\frac{7!}{7!(0)!}$
$\frac{5040}{1 \times 5040}$	$\frac{5040}{1 \times 720}$	$\frac{5040}{2 \times 120}$	$\frac{5040}{6 \times 24}$	$\frac{5040}{24 \times 6}$	$\frac{5040}{120 \times 2}$	$\frac{5040}{720 \times 1}$	$\frac{5040}{5040 \times 1}$
1	7	21	35	35	21	7	1

- 3 squares in $1 \mathrm{JSB} \times 6 \mathrm{JSB}$ in $\mathrm{RDH}=18$ squares in RDH.

Remaining 3 ?? Unconnected/degenerate squares

- 6 strong JSB +4 weak JSB $=10$ hexagons in RDH. Remaining 25 ?? Sherwood-Czezowski. Others ? Unconnected4/12.
- symmetry/mirror image ? Complementarity:
$\# \sigma_{0}=\# \sigma_{7}, \# \sigma_{1}=\# \sigma_{6}, \# \sigma_{2}=\# \sigma_{5}, \# \sigma_{3}=\# \sigma_{4}$,

Families of σ_{n}-structures: the CO -perspective

rhombic dodecahedron (RDH) $=$ cube (C) + octahedron (O)

σ_{7}		σ_{4}	+	σ_{3}
7 PCDs	$=$	$4 \mathrm{PCDsL1}$-L3	+	3 PCDs L2-L2

Construct a principled typology of families of σ-structures inside RDH.

- $\sigma_{n}=n$ out of the 7 PCDs of RDH
- $\sigma_{n}=[k$ out of the 4 PCDs of $C]+[\ell$ out of the 3 PCDs of $O]$
- CO-perspective: every class of σ_{n}-structures can be subdivided into families of the form $C_{k} O_{l}$, for $0 \leq k \leq 4 ; 0 \leq \ell \leq 3$ and $k+\ell=n$.
- For example, the cube C is $\mathrm{C}_{4} O_{0}$, and the octahedron O is $\mathrm{C}_{0} O_{3}$.
- The number of $C_{k} O_{\ell}$-structures inside RDH $\left(C_{4} O_{3}\right)$ can be calculated as $\binom{4}{k}\binom{3}{\ell}$.

Families of σ_{2}-structures: the CO-perspective

Families of σ_{3}-structures: the CO-perspective

- CO-perspective: no distinction strong JSB vs Sherwood-Czezowski
- isomorphism perspective: no distinction strong JSB vs weak JSB

σ_{0}	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}	σ_{7}
			$C_{0} O_{3}$	$C_{4} O_{0}$			
			1	1			
	$C_{1} O_{0}$	$C_{0} O_{2}$	$C_{3} O_{0}$	$C_{1} O_{3}$	$C_{4} O_{1}$	$C_{3} O_{3}$	
	4	3	4	4	3	4	
$C_{0} O_{0}$	$C_{0} O_{1}$	$C_{2} O_{0}$	$C_{2} O_{1} a$	$C_{2} O_{2} a$	$C_{2} O_{3}$	$C_{4} O_{2}$	$C_{4} O_{3}$
1	3	6	6	6	6	3	1
		$C_{1} O_{1}$	$C_{2} O_{1} b$	$C_{2} O_{2} b$	$C_{3} O_{2}$		
		12	12	12	12		
			$C_{1} O_{2}$	$C_{3} O_{1}$			
			12	12			
1	7	21	35	35	21	7	1

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions

Complementarities between families of σ_{n}-structures

Fundamental complementarity between σ-structures inside RDH

- $\left|\sigma_{n}\right|=\left|\sigma_{7-n}\right|$
- $\left|C_{k} O_{\ell}\right|=\left|C_{4-k} O_{3-\ell}\right|$
$\mathrm{C}_{4} \mathrm{O}_{0}$

$$
C_{0} O_{3}
$$

$$
\mathrm{C}_{4} \mathrm{O}_{3}
$$

Introduction to Logical Geometry - H. Smessaert \& L. Demey

$$
\mathrm{C}_{2} \mathrm{O}_{1} a \quad \mathrm{C}_{2} \mathrm{O}_{2} a \quad \mathrm{C}_{4} O_{3}
$$

$$
\begin{aligned}
& \text { strong JSB } \\
& \text { hexagon }
\end{aligned}
$$

Buridan
octagon
rhombic dodecahedron

rhombicube

structure	subtype	N	subtype	structure
σ_{0}	$\mathrm{C}_{0} O_{0}$	1	$\mathrm{C}_{4} O_{3}$	σ_{7}
σ_{1}	$\mathrm{C}_{1} O_{0}$	4	$C_{3} O_{3}$	σ_{6}
	$\mathrm{C}_{0} O_{1}$	3	$C_{4} O_{2}$	
σ_{2}	$\mathrm{C}_{0} O_{2}$	3	$C_{4} O_{1}$	
	$\mathrm{C}_{2} O_{0}$	6	$C_{2} O_{3}$	σ_{5}
	$C_{1} O_{1}$	12	$C_{3} O_{2}$	
	$C_{0} O_{3}$	1	$C_{4} O_{0}$	
	$C_{3} O_{0}$	4	$C_{1} O_{3}$	
	$C_{2} O_{1} a$	6	$C_{2} O_{2} a$	σ_{4}
	$C_{2} O_{1} b$	12	$C_{2} O_{2} b$	
	$C_{1} O_{2}$	12	$C_{3} O_{1}$	

\rightsquigarrow The logical geometry of rhombic dodecahedron RDH
\rightsquigarrow Typology of Aristotelian subdiagrams of RDH
\rightsquigarrow Tools/techniques for exhaustive analysis of internal structure of RDH

- define σ_{n}-structure $=n$ out of the 7 PCDs of RDH
- distinguish families of substructures $=C_{k} O_{\ell}$-perspective: $\sigma_{n}=[k$ out of the 4 PCDs of $C]+[\ell$ out of the 3 PCDs of $O]$
- establish the exhaustiveness of the typology \rightsquigarrow complementarity
\rightsquigarrow Frame of reference for classifying Aristotelian diagrams in the literature

σ_{1}	$C_{1} O_{0}$ Brown 1984 $C_{0} O_{1}$	Demey 2012
σ_{2}	$C_{0} O_{2}$	Brown 1984, Béziau 2012
	Fitting \& Mendelsohn 1998, McNamara 2010, Lenzen 2012	
	$C_{1} O_{1}$	Luzeaux, Sallantin \& Dartnell 2008, Moretti 2009

Structure of the talk

(1) General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics
(2) Information in Aristotelian Diagrams
- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness
(3) The Logical Geometry of the Rhombic Dodecahedron
- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures
(4) Conclusions

Introduction to Logical Geometry - H. Smessaert \& L. Demey

- high-level overview of logical geometry
- tension between two considerations:
- the square is just one of many Aristotelian diagrams (typology)
- the square is special after all (very informative)
- tension between symmetry and asymmetry \rightsquigarrow work on lexicalisation patterns by Dany Jaspers (and Pieter Seuren)
- ongoing work:
- concrete case studies: many/few ("filling in the gaps in the classification")
- alternative presentations for Aristotelian diagrams (Square 2014)
- relation between Aristotelian diagrams and other logic diagrams
- duality diagrams (Diagrams 2012)
- Hasse diagrams (Diagrams 2014)
- graded Aristotelian relations

Thank you!

More info: www.logicalgeometry.org

