

An Introduction to Logical Geometry

Hans Smessaert and Lorenz Demey

- General introduction
 - Central aim of Logical Geometry
 - Bitstrings in Logical Geometry
 - Aristotelian relations and diagrams
 - Logical Geometry and Formal Semantics
- 2 Information in Aristotelian Diagrams
 - Problems with the Aristotelian geometry
 - Two new geometries
 - Information levels of logical relations and Unconnectedness
 - 3 The Logical Geometry of the Rhombic Dodecahedron
 - Aristotelian subdiagrams
 - The Rhombic Dodecahedron of Oppositions RDH
 - (Families of) Sigma-structures: the CO-perspective
 - Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

KU LEL

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

The central aim of Logical Geometry (www.logicalgeometry.org) is

- to develop an *interdisciplinary framework*
- for the study of geometrical representations
- in the analysis of *logical relations*.

More in particular:

- we analyse the **logical relations** of opposition, implication and duality between expressions in various logical, linguistic and conceptual systems.
- we study abstract **geometrical representations** of these relations as well as their visualisation by means of 2D and 3D diagrams.
- we develop an **interdisciplinary framework** integrating insights from logic, formal semantics, algebra, group theory, lattice theory, computer graphics, cognitive psychology, information visualisation and diagrams design.

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEU

- Smessaert (1993). The Logical Geometry of Comparison and Quantification. A cross-categorial analysis of Dutch determiners and aspectual adverbs.
- World Congress on the Square of Opposition (Jean-Yves Béziau)
 - Square 2007: Montreux, Switzerland
 - Square 2010: Corte, Corsica
 - Square 2012: Beirut, Lebanon
 - Square 2014: Vatican, Roma
- Alessio Moretti (2009). *The geometry of logical opposition*. PhD in logic, University of Neuchâtel, Switzerland
- International Conference on the Theory and Application of Diagrams
 - Diagrams 2012: Canterbury, UK
 - Diagrams 2014: Melbourne, Australia

KU LEUV

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

- Bitstrings are sequences of bits (0/1) that encode the denotations of formulas or expressions from:
 - logical systems: e.g. classical propositional logic, first-order logic, modal logic and public announcement logic
 - lexical fields: e.g. comparative quantification, subjective quantification, color terms and set inclusion relations
- Each bit provides an answer to a (binary) meaningful question (analysis of generalized quantifiers as sets of sets).
- Each question concerns a component (point or interval) of a scalar structure creating a partition of logical space:

KU LE

- In Predicate Logic/GQT: Is R(A,B) true if $A \subseteq B$ yes/no $A \nsubseteq B$ and $A \cap B \neq \emptyset$ yes/no $A \cap B = \emptyset$ yes/no
- In Modal Logic: Is φ true if

 p is true in all possible worlds?
 p is true in some but not in all possible worlds?
 yes/no
 p is true in no possible worlds?

Modal Logic	GQT	level 1/0	level 2/3	GQT	Modal Logic
necessary $(\Box p)$	all	100	011	not all	not necessary $(\neg \Box p)$
<i>contingent</i> $(\neg \Box p \land \Diamond p)$	some but not all	010	101	no or all	<i>not contingent</i> $(\Box p \lor \neg \Diamond p)$
impossible $(\neg \Diamond p)$	no	001	110	some	possible $(\Diamond p)$
<i>contradiction</i> ($\Box p \land \neg \Box p$)	some and no	000	111	some or no	tautology $(\Box p \lor \neg \Box p)$

In Modal Logic S5: Is φ true if: p is true in all possible worlds? yes/no p is true in the actual world but not in all possible worlds? yes/no p is true in some possible worlds but not in the actual world? yes/no p is true in no possible worlds? yes/no
In Propositional Logic: Is φ true if: p is true and q is true? yes/no p is true and q is false? yes/no p is false and q is true? yes/no p is false and q is false? yes/no

Introduction to Logical Geometry – H. Smessaert & L. Demey

$2^3=8$ bitstrings of length 3 $\rightsquigarrow 2^4=16$ bitstrings of length 4

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level 3	Propositional Logic	Modal Logic S5
$\Box p$	$p \wedge q$	1000	0111	$\neg (p \land q)$	$\neg \Box p$
$\neg \Box p \wedge p$	$\neg (p \rightarrow q)$	0100	1011	$p \rightarrow q$	$\Box p \lor \neg p$
$\Diamond p \wedge \neg p$	$\neg (p \leftarrow q)$	0010	1101	$p \leftarrow q$	$\neg \Diamond p \lor p$
$\neg \Diamond p$	$\neg (p \lor q)$	0001	1110	$p \lor q$	$\Diamond p$
Modal Logic S5	Propositional Logic	bitstrings level 2/0	bitstrings level 2/4	Propositional Logic	Modal Logic S5
p	p	1100	0011	$\neg p$	$\neg p$
$\Box p \lor (\Diamond p \land \neg p)$	q	1010	0101	$\neg q$	$\neg \Diamond p \lor (\neg \Box p \land p)$
$\Box p \lor \neg \Diamond p$	$p \leftrightarrow q$	1001	0110	$\neg(p \leftrightarrow q)$	$\neg \Box p \land \Diamond p$
$\Box p \land \neg \Box p$	$p \wedge \neg p$	0000	1111	$p \lor \neg p$	$\Box p \lor \neg \Box p$

KU LEUVEN

Introduction to Logical Geometry - H. Smessaert & L. Demey

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

11

KU LEL

- Informally, two formulas are:
 - contradictory iff they cannot be true together and cannot be false together
 - contrary iff they cannot be true together, but can be false together
 - subcontrary iff they can be true together, but cannot be false together
 - in subalternation iff the first logically entails the second, but not vice versa
- Running example: the modal logic S5:

KU LEU

- Formally (relative to a logical system S), two formulas φ, ψ are contradictory iff $S \models \neg(\varphi \land \psi)$ and $S \models \neg(\neg \varphi \land \neg \psi)$ contrary iff $S \models \neg(\varphi \land \psi)$ and $S \not\models \neg(\neg \varphi \land \neg \psi)$ subcontrary iff $S \not\models \neg(\varphi \land \psi)$ and $S \not\models \neg(\neg \varphi \land \neg \psi)$ in subalternation iff $S \models \varphi \rightarrow \psi$ and $S \not\models \psi \rightarrow \varphi$
- In terms of bitstrings, two **bitstrings** b_1 and b_2 are contradictory iff $b_1 \wedge b_2 = 0000$ and $b_1 \vee b_2 = 1111$ contrary iff $b_1 \wedge b_2 = 0000$ and $b_1 \vee b_2 \neq 1111$ subcontrary iff $b_1 \wedge b_2 \neq 0000$ and $b_1 \vee b_2 = 1111$ in subalternation iff $b_1 \wedge b_2 = b_1$ and $b_1 \vee b_2 \neq b_1$
- φ and ψ stand in some Aristotelian relation (defined for S) iff $\beta(\varphi)$ and $\beta(\psi)$ stand in that same relation (defined for bitstrings).
- *β* maps formulas from S to bitstrings, preserving Aristotelian structure (Representation Theorem for finite Boolean algebras)

KU LEUV

Aristotelian octagons

2 × L1-L3 2 × L2-L2

KU LEUVEN

Introduction to Logical Geometry – H. Smessaert & L. Demey

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

18

19

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

2 Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

3 The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

KU LEU

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

2 Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

ullet recall the Aristotelian geometry: arphi and ψ are said to be

- problems with the Aristotelian geometry:
 - not mutually exclusive: e.g. \perp and p are contrary and subaltern (problem disappears if we restrict to contingent formulas)
 - not exhaustive: e.g. p and ◊p ∧ ◊¬p are in no Arist. relation at all (if φ is contingent, then φ is in no Arist. relation to itself)
 - conceptual confusion: true/false together vs truth propagation
 - 'together' ~> symmetrical relations (undirected)
 - 'propagation' ~> asymmetrical relations (directed)

Introduction to Logical Geometry – H. Smessaert & L. Demey

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

2 Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

- the opposition geometry (OG): φ and ψ are

• the implication geometry (IG): φ and ψ are in

- opposition relations: being true/false together
- implication relations: truth propagation

 $\varphi \wedge \psi$ and $\neg \varphi \wedge \neg \psi$ $\varphi \rightarrow \psi$ and $\psi \rightarrow \varphi$

KU LEUVE

Introduction to Logical Geometry – H. Smessaert & L. Demey

- OG and IG jointly solve the problems of the Aristotelian geometry:
 - each pair of formulas stands in exactly one opposition relation
 - each pair of formulas stands in exactly one implication relation
 - no more conceptual confusion
- conceptual independence, yet clear relationship (symmetry breaking):
 - $\mathsf{CD}(\varphi, \psi) \quad \Leftrightarrow \quad \mathsf{Bl}(\psi, \neg \varphi)$ $\mathsf{C}(\varphi,\psi) \quad \Leftrightarrow \quad \mathsf{Ll}(\psi,\neg\varphi)$
 - $\mathsf{SC}(\varphi,\psi) \iff \mathsf{RI}(\psi,\neg\varphi)$ $\mathsf{NCD}(\varphi, \psi) \Leftrightarrow \mathsf{NI}(\psi, \neg \varphi)$
- Correia: two philosophical traditions in Aristotle scholarship

 - square as a theory of consequence

 square as a theory of negation
 commentaries on *De Interpretatione* commentaries on Prior Analytics

KU LEUV

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

Information levels of logical relations

- informativity of a relation holding between φ and ψ is inversely correlated with the number of states (models) it is compatible with
- informativity of the opposition and implication relations:

Introduction to Logical Geometry – H. Smessaert & L. Demey

- Aristotelian geometry: hybrid between
 - opposition geometry: contradiction, contrariety, subcontrariety
 - implication geometry: left-implication (subalternation)
- these relations are highly informative (in their geometries)

KU LEUV

- given any two formulas:
 - ullet they stand in exactly one opposition relation R
 - ullet they stand in exactly one implication relation S
- informative relation in OG combines with uninformative relation in IG and vice versa
- exception = NCD + NI = **unconnectedness** (logical independence)
 - no Aristotelian relation at all (non-exhaustiveness of AG)
 - combination of the two least informative relations
 - Aristotelian gap = information gap

- unconnectedness in the Béziau octagon
- ullet e.g. p and $\Diamond p \land \Diamond \neg p$ are unconnected

- logical geometry: Aristotelian square of oppositions and its extensions
- the Aristotelian square is highly informative:
 - Aristotelian geometry is hybrid: maximize informativity ⇒ applies to all Aristotelian diagrams
 - avoid unconnectedness: *minimize* uninformativity
 ⇒ some Aristotelian diagrams succeed better than others
 - classical square, JSB hexagon, SC hexagon don't have unconnectedness
 - Béziau octagon (and many other diagrams) do have unconnectedness
- Q: what about the JSB hexagon, SC hexagon, etc.?
 - equally informative as the square
 - yet less widely known...
- A: requires yet another geometry: duality

KU LEU

- General introduction
 - Central aim of Logical Geometry
 - Bitstrings in Logical Geometry
 - Aristotelian relations and diagrams
 - Logical Geometry and Formal Semantics
- 2 Information in Aristotelian Diagrams
 - Problems with the Aristotelian geometry
 - Two new geometries
 - Information levels of logical relations and Unconnectedness
- The Logical Geometry of the Rhombic Dodecahedron
 - Aristotelian subdiagrams
 - The Rhombic Dodecahedron of Oppositions RDH
 - (Families of) Sigma-structures: the CO-perspective
 - Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

KU LEU

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

3 squares embedded in (strong) Jacoby-Sesmat-Blanché hexagon (JSB)

3 squares embedded in Sherwood-Czezowski hexagon (SC)

Introduction to Logical Geometry – H. Smessaert & L. Demey

4 hexagons embedded in Buridan octagon

Introduction to Logical Geometry – H. Smessaert & L. Demey

Internal structure of bigger/3D Aristotelian diagrams ? Some initial results:

- 4 weak JSB-hexagons in logical cube (Moretti-Pellissier)
- 6 strong JSB hexagons in bigger 3D structure with 14 formulas/vertices
 - tetra-hexahedron (Sauriol)
 - tetra-icosahedron (Moretti-Pellissier)
 - nested tetrahedron (Lewis, Dubois-Prade)
 - rhombic dodecahedron = RDH (Smessaert-Demey) => joint work

Greater complexity of RDH \rightsquigarrow exhaustive analysis of internal structure $\ref{eq:structure}$ Main aim of this talk \rightsquigarrow tools and techniques for such an analysis

- examine larger substructures (octagon, decagon, dodecagon, ...)
- distinguish families of substructures (strong JSB, weak JSB, ...)
- establish the exhaustiveness of the typology

KU LEUV

Structure of the talk

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

cube	+	octahedron	=	cuboctahedron	$\overset{dual}{\Longrightarrow}$	rhombic dodecahedron
Platonic		Platonic		Archimedean		Catalan
6 faces 8 vertices		8 faces 6 vertices		14 faces 12 vertices		12 faces 14 vertices

Introduction to Logical Geometry - H. Smessaert & L. Demey

 $\Box p \land \neg \Box p$

14 vertices of RDH decorated with 14 bitstrings of length 4

Modal Logic S5	Propositional Logic	bitstrings level 1	bitstrings level 3	Propositional Logic	Modal Logic S5
$\Box p$	$p \wedge q$	1000	0111	$\neg (p \land q)$	$\neg \Box p$
$\neg \Box p \wedge p$	$\neg (p \rightarrow q)$	0100	1011	$p \rightarrow q$	$\Box p \lor \neg p$
$\Diamond p \land \neg p$	$\neg (p \leftarrow q)$	0010	1101	$p \leftarrow q$	$\neg \Diamond p \lor p$
$\neg \Diamond p$	$\neg (p \lor q)$	0001	1110	$p \lor q$	$\Diamond p$
-					
Modal Logic S5	Propositional Logic	bitstrings level 2/0	bitstrings level 2/4	Propositional Logic	Modal Logic S5
p	p	1100	0011	$\neg p$	$\neg p$
$\Box p \lor (\Diamond p \land \neg p)$	q	1010	0101	$\neg q$	$\neg \Diamond p \lor (\neg \Box p \land p)$
$\Box p \lor \neg \Diamond p$	$p \leftrightarrow q$	1001	0110	$\neg(p \leftrightarrow q)$	$\neg \Box p \land \Diamond p$

1111

 $p \lor \neg p$

 $\Box p \lor \neg \Box p$

KU LEUVEN

0000

Introduction to Logical Geometry – H. Smessaert & L. Demey

 $p \wedge \neg p$

 $cube = 4 \times L1 + 4 \times L3 / octahedron = 6 \times L2 / center = L0 + L4$

Introduction to Logical Geometry – H. Smessaert & L. Demey

Bitstrings have been used to encode

- **logical systems**: e.g. classical propositional logic, first-order logic, modal logic and public announcement logic
- lexical fields: e.g. comparative quantification, subjective quantification, color terms and set inclusion relations

Contradiction relation is visualized using the **central symmetry** of RDH:

- contradictory bitstrings (e.g. 1100 and 0011) occupy diametrically opposed vertices
- the negation of a bitstring is located at a maximal (Euclidean) distance from that bitstring.
- nearly all Aristotelian diagrams discussed in the literature observe central symmetry ("contradictories are diagonals")

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEU

Structure of the talk

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

Bitstrings/formulas come in **pairs of contradictories (PCD)** Key notion in describing RDH is σ_n -structure.

- A σ_n -structure consists of n PCDs
- A σ_n -structure is visualized by means of a centrally symmetrical diagram

• Examples	a square has 2 PCDs	\Rightarrow	σ_2 -structure
	a hexagon has 3 PCDs	\Rightarrow	σ_3 -structure
	an octagon has 4 PCDs	\Rightarrow	σ_4 -structure
	a cube has 4 PCDs	\Rightarrow	σ_4 -structure

Remarks

- 1 σ -structure may correspond to different σ -diagrams:
 - alternative 2D visualisations
 - 2D versus 3D representations
- All σ -structures have an even number of formulas/bitstrings
- ullet Nearly all Aristotelian diagrams in the literature are σ -structures

Introduction to Logical Geometry - H. Smessaert & L. Demey

Original question of Aristotelian subdiagrams ("How many smaller diagrams inside bigger diagram?") can now be reformulated in terms of σ -structures.

- For n ≤ k, the nummer of σ_n-structures embedded in a σ_k-structure can be calculated as the number of combinations of n PCDs out of k by means of the simple combinatorial formula:
 ^k
 ^k
- This combinatorial technique ~>> recover well-known results:
 - #squares (σ_2) inside a hexagon (σ_3) is $\binom{3}{2}$: $\frac{3!}{2!(1)!} = \frac{6}{2} = 3$
 - #hexagons (σ_3) inside octagon (σ_4) is $\binom{4}{3}$: $\frac{4!}{3!(1)!} = \frac{24}{6} = 4$
- This combinatorial technique \rightsquigarrow obtain new results for RDH:
 - RDH contains 14 vertices, hence 7 PCDs \rightsquigarrow RDH = $\sigma_7\text{-structure}$
 - Calculate the number of σ_n -structures inside a σ_7 -structure as the number of combinations of n PCDs out of 7: $\binom{7}{n} = \frac{7!}{n!(7-n)!}$

Introduction to Logical Geometry - H. Smessaert & L. Demey

σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7
$\binom{7}{0}$	$\binom{7}{1}$	$\binom{7}{2}$	$\binom{7}{3}$	$\binom{7}{4}$	$\binom{7}{5}$	$\binom{7}{6}$	$\binom{7}{7}$
$\frac{7!}{0!(7)!}$	$\frac{7!}{1!(6)!}$	$\frac{7!}{2!(5)!}$	$\frac{7!}{3!(4)!}$	$\frac{7!}{4!(3)!}$	$\frac{7!}{5!(2)!}$	$\frac{7!}{6!(1)!}$	$\frac{7!}{7!(0)!}$
$\frac{5040}{1\times5040}$	$\frac{5040}{1\times720}$	$\frac{5040}{2\times120}$	$\frac{5040}{6\times24}$	$\frac{5040}{24\times6}$	$\frac{5040}{120\times 2}$	$\frac{5040}{720\times1}$	$\tfrac{5040}{5040\times1}$
1	7	21	35	35	21	7	1

- 3 squares in 1 JSB × 6 JSB in RDH = 18 squares in RDH. Remaining 3 ?? Unconnected/degenerate squares
- 6 strong JSB + 4 weak JSB = 10 hexagons in RDH. Remaining 25 ?? Sherwood-Czezowski. Others ? Unconnected4/12.
- symmetry/mirror image ? Complementarity: $\#\sigma_0 = \#\sigma_7, \ \#\sigma_1 = \#\sigma_6, \ \#\sigma_2 = \#\sigma_5, \ \#\sigma_3 = \#\sigma_4,$

Introduction to Logical Geometry – H. Smessaert & L. Demey

rhombic dodecahedron (RDH)	=	cube (C)	+	octahedron (O)
σ_7	=	σ_4	+	σ_3
7 PCDs	=	4 PCDs L1-L3	+	3 PCDs L2-L2

Construct a principled typology of families of σ -structures inside RDH.

- $\sigma_n = n$ out of the 7 PCDs of RDH
- $\sigma_n = [k \text{ out of the } 4 \text{ PCDs of } C] + [\ell \text{ out of the } 3 \text{ PCDs of } O]$
- **CO-perspective**: every class of σ_n -structures can be subdivided into families of the form C_kO_l , for $0 \le k \le 4$; $0 \le \ell \le 3$ and $k + \ell = n$.
- For example, the cube C is C_4O_0 , and the octahedron O is C_0O_3 .
- The number of $C_k O_\ell$ -structures inside RDH $(C_4 O_3)$ can be calculated as $\binom{4}{k}\binom{3}{\ell}$.

KULEUV

Introduction to Logical Geometry – H. Smessaert & L. Demey

Introduction to Logical Geometry – H. Smessaert & L. Demey

Families of σ_3 -structures: the isomorphism perspective

- CO-perspective: no distinction strong JSB vs Sherwood-Czezowski
- isomorphism perspective: no distinction strong JSB vs weak JSB

Introduction to Logical Geometry – H. Smessaert & L. Demey

σ_0	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7
			C_0O_3	C_4O_0			
			1	1			
	C_1O_0	C_0O_2	C_3O_0	C_1O_3	C_4O_1	C_3O_3	
	4	3	4	4	3	4	
C_0O_0	C_0O_1	C_2O_0	C_2O_1a	C_2O_2a	C_2O_3	C_4O_2	C_4O_3
1	3	6	6	6	6	3	1
		C_1O_1	C_2O_1b	C_2O_2b	C_3O_2		
		12	12	12	12		
			C_1O_2	C_3O_1			
			12	12			
1	7	21	35	35	21	7	1

Introduction to Logical Geometry - H. Smessaert & L. Demey

Structure of the talk

General introduction

- Central aim of Logical Geometry
- Bitstrings in Logical Geometry
- Aristotelian relations and diagrams
- Logical Geometry and Formal Semantics

Information in Aristotelian Diagrams

- Problems with the Aristotelian geometry
- Two new geometries
- Information levels of logical relations and Unconnectedness

The Logical Geometry of the Rhombic Dodecahedron

- Aristotelian subdiagrams
- The Rhombic Dodecahedron of Oppositions RDH
- (Families of) Sigma-structures: the CO-perspective
- Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

KU LEL

Fundamental complementarity between σ -structures inside RDH

- $|\sigma_n| = |\sigma_{7-n}|$
- $|C_k O_\ell| = |C_{4-k} O_{3-\ell}|$

Introduction to Logical Geometry – H. Smessaert & L. Demey

rhombicube

Introduction to Logical Geometry – H. Smessaert & L. Demey

structure	subtype	Ν	subtype	structure
σ_0	C_0O_0	1	C_4O_3	σ_7
σ_1	C_1O_0	4	C_3O_3	σ_6
	C_0O_1	3	C_4O_2	
	C_0O_2	3	C_4O_1	
σ_2	C_2O_0	6	C_2O_3	σ_5
	C_1O_1	12	C_3O_2	
	$C_0 O_3$	1	C_4O_0	
	C_3O_0	4	C_1O_3	
σ_3	C_2O_1a	6	C_2O_2a	σ_4
	C_2O_1b	12	C_2O_2b	
	C_1O_2	12	C_3O_1	

Introduction to Logical Geometry - H. Smessaert & L. Demey

 \rightsquigarrow The logical geometry of rhombic dodecahedron RDH

- \rightsquigarrow Typology of Aristotelian subdiagrams of RDH
- \rightsquigarrow Tools/techniques for exhaustive analysis of internal structure of RDH
 - define σ_n -structure = n out of the 7 PCDs of RDH
 - distinguish families of substructures = $C_k O_\ell$ -perspective: $\sigma_n = [k \text{ out of the } 4 \text{ PCDs of } C] + [\ell \text{ out of the } 3 \text{ PCDs of } O]$
 - ullet establish the exhaustiveness of the typology \rightsquigarrow complementarity
- \rightsquigarrow Frame of reference for classifying Aristotelian diagrams in the literature

KU LEUV

Overview RDH

σ_1	C_1O_0	Brown 1984
	C_0O_1	Demey 2012
	C_0O_2	Brown 1984, Béziau 2012
σ_2	C_2O_0	Fitting & Mendelsohn 1998, McNamara 2010, Lenzen 2012
	C_1O_1	Luzeaux, Sallantin & Dartnell 2008, Moretti 2009
	C_0O_3	Moretti 2009
	C_2O_1a	Sesmat 1951, Blanché 1966, Béziau 2012, Dubois & Prade 2013
σ_3	C_2O_1b	Czezowski 1955, Khomskii 2012, Chatti & Schang 2013
	C_1O_2	Seuren 2013, Seuren & Jaspers 2014, Smessaert & Demey 2014
	C_3O_0	Pellissier 2008, Moretti 2009, Moretti 2012
	C_1O_3	
	C_3O_1	
σ_4	C_2O_2b	Béziau 2003, Smessaert & Demey 2014
	C_2O_2a	Hughes 1987, Read 2012, Seuren 2012
	C_4O_0	Moretti 2009, Chatti & Schang 2013, Dubois & Prade 2013
	C_3O_2	Seuren & Jaspers 2014
σ_5	C_2O_3	
	C_4O_1	Blanché 1966, Joerden & Hruschka 1987, Wessels 2002
σ_6	C_4O_2	Béziau 2003, Moretti 2009, Moretti 2010
	C_3O_3	
σ_7	C_4O_3	Sauriol 1968, Moretti 2009, Smessaert 2009, Dubois & Prade 2013

Introduction to Logical Geometry - H. Smessaert & L. Demey

Structure of the talk

- General introduction
 - Central aim of Logical Geometry
 - Bitstrings in Logical Geometry
 - Aristotelian relations and diagrams
 - Logical Geometry and Formal Semantics
- 2 Information in Aristotelian Diagrams
 - Problems with the Aristotelian geometry
 - Two new geometries
 - Information levels of logical relations and Unconnectedness
- 3 The Logical Geometry of the Rhombic Dodecahedron
 - Aristotelian subdiagrams
 - The Rhombic Dodecahedron of Oppositions RDH
 - (Families of) Sigma-structures: the CO-perspective
 - Complementarities between families of Sigma-structures

4 Conclusions

Introduction to Logical Geometry - H. Smessaert & L. Demey

Conclusions

- high-level overview of logical geometry
- tension between two considerations:
 - the square is just one of many Aristotelian diagrams (typology)
 - the square is special after all (very informative)
- tension between symmetry and asymmetry → work on lexicalisation patterns by Dany Jaspers (and Pieter Seuren)
- ongoing work:
 - concrete case studies: *many/few* ("filling in the gaps in the classification")
 - alternative presentations for Aristotelian diagrams (Square 2014)
 - relation between Aristotelian diagrams and other logic diagrams
 - duality diagrams (Diagrams 2012)
 - Hasse diagrams (Diagrams 2014)
 - graded Aristotelian relations

Introduction to Logical Geometry – H. Smessaert & L. Demey

KU LEUV

Thank you!

More info: www.logicalgeometry.org

Introduction to Logical Geometry – H. Smessaert & L. Demey