KU LEUVEN

Buridan's and Avicenna's Aristotelian Diagrams for Combined Operators

Lorenz Demey

CLAW/DWMC Symposium, 22 May '15

Before we get started...

- this talk is based on joint research with
- Saloua Chatti (U. Tunis)
- Hans Smessaert (KU Leuven)
- Fabien Schang (HSE Moscow)
- mix of logical and historical aspects
- today's talk:
- first half: emphasis on the historical aspects
- second half: emphasis on the more technical aspects
- historical scholarship:
- Buridan: S. Read, G. Hughes, S. Johnston, J. Campos Benítez
- Avicenna: S. Chatti, W. Hodges
- status of diagrams:
- heavyweight: visual representation of logical theory
- lightweight: visual representation of logical theory

Goals of the talk

- Buridan's Aristotelian octagons:
- relatively well-known
- actual diagrams
- logical goals:
- systematically study some natural extensions of Buridan's octagon
- compare them in terms of their logical complexity (bitstring length)
- historical goals:
- show that although he did not draw the actual diagram, Buridan had the logical means available to construct at least one of these extensions
- establish the historical priority of Al-Farabi and Avicenna with respect to Buridan's octagon and at least two of its extensions

Structure of the talk

(1) Some Preliminaries from Logical Geometry
(2) Buridan's Aristotelian Diagrams
(3) Avicenna's Aristotelian Diagrams
(4) Bitstring Analysis
(5) Conclusion

Structure of the talk

(1) Some Preliminaries from Logical Geometry (2) Buridan's Aristotelian Diagrams (3) Avicenna's Aristotelian Diagrams 4 Bitstring Analysis (5) Conclusion

Aristotelian Diagrams for Combined Operators - L. Demey

- an Aristotelian diagram visualizes some formulas and the Aristotelian relations holding between them
- definition of the Aristotelian relations: two propositions are
contradictory iff they cannot be true together and they cannot be false together,
contrary iff they cannot be true together but they can be false together,
subcontrary iff they can be true together but they cannot be false together,
in subalternation iff the first proposition entails the second but the second doesn't entail the first

Some Aristotelian squares

- already during the Middle Ages, philosophers used Aristotelian diagrams larger than the classical square to visualize their logical theories
- e.g. John Buridan (ca. 1295-1358): several octagons (see later)
- e.g. William of Sherwood (ca. 1200-1272), Introductiones in Logicam \Rightarrow integrating singular propositions into the classical square

Boolean closure of an Aristotelian diagram

- the smallest Aristotelian diagram that contains all contingent Boolean combinations of formulas from the original diagram
- the Boolean closure of a classical square is a Jacoby-Sesmat-Blanché hexagon (6 formulas)

Boolean closure of an Aristotelian diagram

- the smallest Aristotelian diagram that contains all contingent Boolean combinations of formulas from the original diagram
- the Boolean closure of a classical square is a Jacoby-Sesmat-Blanché hexagon (6 formulas)
- the Boolean closure of a Sherwood-Czezowski hexagon is a (3D) rhombic dodecahedron (14 formulas)

Theorem

A Boolean closure has $2^{n}-2$ formulas, for some natural number n.

Bitstrings

- every Aristotelian diagram can be represented by means of bitstrings
- bitstring $=$ sequence of bits $(0 / 1)$
- 'anchor formulas' $\alpha_{1}, \ldots, \alpha_{n}$ (obtainable from the diagram)
- every formula in (the Boolean closure of) the diagram is equivalent to a disjunction of these anchor formulas
- bitstrings keep track which anchor formulas occur in the disjunction and which ones do not
- technical: disjunctive normal forms
- intuition: bitstrings as coordinates, anchor formulas as axes

$$
\text { point }(5,2) \longleftrightarrow 5 \cdot \overrightarrow{\mathbf{x}}+2 \cdot \overrightarrow{\mathbf{y}}
$$

- bitstrings of length $n \Leftrightarrow$ size of Boolean closure is $2^{n}-2$
- example: modal square \Rightarrow bitstrings of length $n=3$
- anchor formulas:

$$
\begin{array}{ll}
\alpha_{1}=\square p & \text { e.g. } \Delta p \equiv \square p \vee(\diamond p \wedge \diamond \neg p)=\alpha_{1} \vee \alpha_{2}=110 \\
\alpha_{2}=\diamond p \wedge \diamond \neg p \\
\alpha_{3}=\square \neg p
\end{array}
$$

- example: modal square \Rightarrow bitstrings of length $n=3$
- anchor formulas:

$$
\begin{array}{ll}
\alpha_{1} & =\square p \\
\alpha_{2} & =\diamond p \wedge \diamond \neg p \\
\alpha_{3} & =\square \neg p
\end{array} \quad \text { e.g. } \Delta p \equiv \square p \vee(\diamond p \wedge \diamond \neg p)=\alpha_{1} \vee \alpha_{2}=110
$$

Aristotelian Diagrams for Combined Operators - L. Demey

Structure of the talk

 (1) Some Preliminaries from Logical Geometry

 (1) Some Preliminaries from Logical Geometry}(2) Buridan's Aristotelian Diagrams

(3) Avicenna's Aristotelian Diagrams

4. Bitstring Analysis

(5) Conclusion

Aristotelian Diagrams for Combined Operators - L. Demey

- John Buridan, ca. 1295-1358
- Summulae de Dialectica (late 1330s, revisions into the 1350s)
- Vatican manuscript Pal.Lat. 994 contains several Aristotelian diagrams:
- Aristotelian square for the usual categorical propositions (A,I,E,O) (e.g. "every human is mortal")
- Aristotelian octagon for non-normal propositions (e.g. "every human some animal is not") (cf. regimentation of Latin)
- Aristotelian octagon for propositions with oblique terms (e.g. "every donkey of every human is running")
- Aristotelian octagon for modal propositions (e.g. "every human is necessarily mortal")

$$
\begin{aligned}
\text { square } & \Rightarrow \text { single operator } \\
\text { octagons } & \Rightarrow \text { combined operators }
\end{aligned}
$$

Aristotelian Diagrams for Combined Operators - L. Demey

Aristotelian Diagrams for Combined Operators - L. Demey

Aristotelian Diagrams for Combined Operators - L. Demey

KULEUVEN

- Buridan's octagon contains the following 8 formulas:
(1) all A are necessarily B
(2) all A are possibly B
(3) some A are necessarily B
(9) some A are possibly B
(6) all A are necessarily not B
(6) all A are possibly not B
(O) some A are nessarily not B
(3) some A are possibly not B

$$
\begin{aligned}
\forall x(\diamond A x \rightarrow \square B x) & \forall \square \\
\forall x(\diamond A x \rightarrow \Delta B x) & \forall \diamond \\
\exists x(\diamond A x \wedge \square B x) & \exists \square \\
\exists x(\diamond A x \wedge \diamond B x) & \exists \diamond \\
\forall x(\diamond A x \rightarrow \square \neg B x) & \forall \square \neg \neg \\
\forall x(\diamond A x \rightarrow \diamond \neg B x) & \forall \diamond \neg \\
\exists x(\diamond A x \wedge \square \neg B x) & \exists \square \neg \\
\exists x(\diamond A x \wedge \diamond \neg B x) & \exists \diamond \neg
\end{aligned}
$$

- note: de re modality, ampliation of the subject in modal formulas
- watch out with negative formulas:

$$
\begin{aligned}
& \text { no } A \text { are necessarily } B \\
= & \text { no } A \text { are (necessarily } B) \\
= & \text { all } A \text { are not (necessarily } B) \\
= & \text { all } A \text { are possibly not } B
\end{aligned}
$$

(assumption: $\square \varphi \rightarrow \diamond \varphi$)

(assumption: $\exists x \diamond A x$ - amplified version of existential import!)

(note: unconnectedness square in the middle of the octagon)

- S. Chatti, 2015, Al-Farabi on Modal Oppositions
- Al-Farabi: ca. 873-950 (± 400 years before Buridan)
- identified the 8 formulas of Buridan's octagon
- identified some of the Aristotelian relations of the octagon (but all relations are deducible from the ones identified by Al-Farabi)
- unlike Buridan, Al-Farabi does not seem to have visualized his logical theorizing by means of an actual diagram
- unlike Buridan, Al-Farabi was not explicit about the issue of ampliation

Bitstrings for Buridan's modal octagon

- we can define a bitstring representation for Buridan's modal octagon
- this makes use of bitstrings of length 6
- 6 anchor formulas:
(1) $\forall \square$
(2) $\forall \diamond \wedge \exists \square \wedge \exists \diamond \neg$
(3) $\forall \diamond \wedge \forall \diamond \neg$
(9) $\exists \square \wedge \exists \square \neg$
(0) $\forall \diamond \neg \wedge \exists \square \neg \wedge \exists \diamond$
(0) $\forall \square \neg$
- note: this means that the Boolean closure of the octagon contains $2^{6}-2=62$ formulas

- classical square (representable by bitstrings of length 3) \Rightarrow natural extension: JSB hexagon, i.e. its Boolean closure $\left(6=2^{3}-2\right)$
- Buridan's modal octagon (representable by bitstrings of length 6) \Rightarrow its Boolean closure has $2^{6}-2=62$ formulas \Rightarrow too large! \Rightarrow other, more 'reasonable' extensions of the octagon?
- key idea:

Buridan's octagon for quantified modal logic can be seen as arising out of the interaction of a quantifier square and a modality square instead of taking the Boolean closure of the entire octagon, we can take the Boolean closure of its 'component squares'

The quantifier square contains $\forall, \forall \neg, \exists, \exists \neg$.
The modality square contains $\square, \square \neg, \diamond, \diamond \neg$.

	\square	$\square \neg$	\diamond	$\diamond \neg$
\forall	$\forall \square$	$\forall \square \neg$	$\forall \diamond$	$\forall \diamond \neg$
$\forall \neg$	$\forall \neg \square$	$\forall \neg \square \neg$	$\forall \neg \diamond$	$\forall \neg \diamond \neg$
\exists	$\exists \square$	$\exists \square \neg$	$\exists \diamond$	$\exists \diamond \neg$
$\exists \neg$	$\exists \neg \square$	$\exists \neg \square \neg$	$\exists \neg \diamond$	$\exists \neg \diamond \neg$

Interaction of a quantifier square and a modality square

- square \times square $\Rightarrow 4 \times 4=16$ formulas

	\square	$\square \neg$	\diamond	$\diamond \neg$
\forall	$\forall \square$	$\forall \square \neg$	$\forall \diamond$	$\forall \diamond \neg$
$\forall \neg$	$\forall \neg \square$	$\forall \neg \square \neg$	$\forall \neg \diamond$	$\forall \neg \diamond \neg$
\exists	$\exists \square$	$\exists \square \neg$	$\exists \diamond$	$\exists \diamond \neg$
$\exists \neg$	$\exists \neg \square$	$\exists \neg \square \neg$	$\exists \neg \diamond$	$\exists \neg \diamond \neg$

- these 16 formulas are pairwise equivalent:

$\forall \neg \square$	$\equiv \forall \diamond \neg$	
$\forall \neg \square \neg$	$\equiv \forall \diamond$	
$\forall \neg \diamond$	\equiv	$\equiv \square \neg$
$\forall \neg \diamond \neg$	$\equiv \forall \square$	
$\exists \neg \square$	$\equiv \exists \diamond \neg$	
$\exists \neg \square \neg$	$\equiv \exists \diamond$	
$\exists \neg \diamond$	$\equiv \exists \square \neg$	
$\exists \neg \diamond \neg$	$\equiv \exists \square$	

$$
\forall x(\diamond A x \rightarrow \neg \square B x) \equiv \forall x(\diamond A x \rightarrow \diamond \neg B x)
$$

Aristotelian Diagrams for Combined Operators - L. Demey

Interaction of a quantifier square and a modality square

	\square	$\square \neg$	\diamond	$\diamond \neg$
\forall	$\forall \square$	$\forall \square \neg$	$\forall \diamond$	$\forall \diamond \neg$
$\forall \neg$	$\forall \neg \square$	$\forall \neg \square \neg$	$\forall \neg \diamond$	$\forall \neg \diamond \neg$
\exists	$\exists \square$	$\exists \square \neg$	$\exists \diamond$	$\exists \diamond \neg$
$\exists \neg$	$\exists \neg \square$	$\exists \neg \square \neg$	$\exists \neg \diamond$	$\exists \neg \diamond \neg$

- up to logical equivalence, we arrive at $\frac{4 \times 4}{2}=8$ formulas
- these are exactly the formulas found in Buridan's modal octagon
- octagon $=$ square \times square
- Buridan octagon $=$ quantifier square \times modality square
- take the Boolean closure of these components separately
- recall that the Boolean closure of a square is a JSB hexagon
- quantifier square \times modality hexagon
- quantifier hexagon \times modality square
- quantifier hexagon \times modality hexagon
- we will start by considering the first of these:

$$
\text { quantifier square } \times \text { modality hexagon }
$$

	\square	$\square \neg$	\diamond	$\diamond \neg$	$\square \vee \square \neg$	$\diamond \wedge \diamond \neg$
\forall	$\forall \square$	$\forall \square \neg$	$\forall \diamond$	$\forall \diamond \neg$	$\forall(\square \vee \square \neg)$	$\forall(\diamond \wedge \diamond \neg)$
$\forall \neg$	$\forall \neg \square$	$\forall \neg \square \neg$	$\forall \neg \diamond$	$\forall \neg \diamond \neg$	$\forall \neg(\square \vee \square \neg)$	$\forall \neg(\diamond \wedge \diamond \neg)$
\exists	$\exists \square$	$\exists \square \neg$	$\exists \diamond$	$\exists \diamond \neg$	$\exists(\square \vee \square \neg)$	$\exists(\diamond \wedge \diamond \neg)$
$\exists \neg$	$\exists \neg \square$	$\exists \neg \square \neg$	$\exists \neg \diamond$	$\exists \neg \diamond \neg$	$\exists \neg(\square \vee \square \neg)$	$\exists \neg(\diamond \wedge \diamond \neg)$

	\square	$\square \neg$	\diamond	$\diamond \neg$	$\square \vee \square \neg$	$\diamond \wedge \diamond \neg$
\forall	$\forall \square$	$\forall \square \neg$	$\forall \diamond$	$\forall \diamond \neg$	$\forall(\square \vee \square \neg)$	$\forall(\diamond \wedge \diamond \neg)$
$\forall \neg$	$\forall \neg \square$	$\forall \neg \square \neg$	$\forall \neg \diamond$	$\forall \neg \diamond \neg$	$\forall \neg(\square \vee \square \neg)$	$\forall \neg(\diamond \wedge \diamond \neg)$
\exists	$\exists \square$	$\exists \square \neg$	$\exists \diamond$	$\exists \diamond \neg$	$\exists(\square \vee \square \neg)$	$\exists(\diamond \wedge \diamond \neg)$
$\exists \neg$	$\exists \neg \square$	$\exists \neg \square \neg$	$\exists \neg \diamond$	$\exists \neg \diamond \neg$	$\exists \neg(\square \vee \square \neg)$	$\exists \neg(\diamond \wedge \diamond \neg)$

- note: $\forall(\square \vee \square \neg)$ should be read as: $\forall x(\diamond A x \rightarrow(\square B x \vee \square \neg B x))$
- 8 new formulas, but again pairwise equivalent:
- $\forall \neg(\square \vee \square \neg) \equiv \forall(\diamond \wedge \diamond \neg)$
- $\forall \neg(\diamond \wedge \diamond \neg) \equiv \forall(\square \vee \square \neg)$

$$
\begin{aligned}
& \exists \neg(\square \vee \square \neg) \equiv \exists(\diamond \wedge \diamond \neg) \\
& \exists \neg(\diamond \wedge \diamond \neg) \equiv \exists(\square \vee \square \neg)
\end{aligned}
$$

	\square	$\square \neg$	\diamond	$\diamond \neg$	$\square \vee \square \neg$	$\diamond \wedge \diamond \neg$
\forall	$\forall \square$	$\forall \square \neg$	$\forall \diamond$	$\forall \diamond \neg$	$\forall(\square \vee \square \neg)$	$\forall(\diamond \wedge \diamond \neg)$
$\forall \neg$	$\forall \neg \square$	$\forall \neg \square \neg$	$\forall \neg \diamond$	$\forall \neg \diamond \neg$	$\forall \neg(\square \vee \square \neg)$	$\forall \neg(\diamond \wedge \diamond \neg)$
\exists	$\exists \square$	$\exists \square \neg$	$\exists \diamond$	$\exists \diamond \neg$	$\exists(\square \vee \square \neg)$	$\exists(\diamond \wedge \diamond \neg)$
$\exists \neg$	$\exists \neg \square$	$\exists \neg \square \neg$	$\exists \neg \diamond$	$\exists \neg \diamond \neg$	$\exists \neg(\square \vee \square \neg)$	$\exists \neg(\diamond \wedge \diamond \neg)$

- note: $\forall(\square \vee \square \neg)$ should be read as: $\forall x(\diamond A x \rightarrow(\square B x \vee \square \neg B x))$
- 8 new formulas, but again pairwise equivalent:
- $\forall \neg(\square \vee \square \neg) \equiv \forall(\diamond \wedge \diamond \neg)$

$$
\begin{aligned}
& \exists \neg(\square \vee \square \neg) \equiv \exists(\diamond \wedge \diamond \neg) \\
& \exists \neg(\diamond \wedge \diamond \neg) \equiv \exists(\square \vee \square \neg)
\end{aligned}
$$

- up to logical equivalence, we arrive at $\frac{4 \times 6}{2}=12$ formulas
\Rightarrow Aristotelian dodecagon that extends Buridan's octagon
- more reasonable than the octagon's full Boolean closure $(8<12 \ll 62)$

Aristotelian Diagrams for Combined Operators - L. Demey

- Buridan's works
- contain the octagon
- do not contain the dodecagon
- S. Read, 2015, John Buridan on Non-Contingency Syllogisms
- identified the 12 formulas of the dodecagon
- identified the Aristotelian relations of the dodecagon
- note: $\forall(\square \vee \square \neg)$ is not equivalent to $\forall \square \vee \forall \square \neg$
- Buridan: "this is true, 'No planet is contingently the moon', but this is false, 'Every planet is necessarily the moon or every planet necessarily fails to be the moon'." (Tractatus de Consequentiis)
no - contingently $=\forall \neg(\diamond \wedge \diamond \neg) \equiv \forall(\square \vee \square \neg) \not \equiv \forall \square \vee \forall \square \neg$

Structure of the talk

(3) Avicenna's Aristotelian Diagrams

4 Bitstring Analysis

Aristotelian Diagrams for Combined Operators - L. Demey

- Buridan "had" a dodecagon (quantifier square \times modality hexagon)
- S. Chatti, 2015, Les Carrés d'Avicenne
- Avicenna: ca. 980-1037 (± 300 years before Buridan)
- identified the 12 formulas of the dodecagon
- identified the Aristotelian relations of the dodecagon
- but with temporal instead of modal operators

formula	Buridan	Avicenna
$\exists \square$	some A are necessarily B	some A are always B
$\forall \diamond$	all A are possibly B	all A are sometimes B

Buridan: dodecagon $=$ quantifier square \times modal hexagon
Avicenna: dodecagon $=$ quantifier square \times temporal hexagon

- the story so far:
- Buridan: octagon $=$ quantifier square \times modality square
- first extension: take Boolean closure of the second square \Rightarrow dodecagon $=$ quantifier square \times modality hexagon
- now: second extension: take Boolean closure of the first square
\Rightarrow dodecagon $=$ quantifier hexagon \times modality square
but also switch the roles of quantifiers and modalities
\Rightarrow dodecagon $=$ modality hexagon \times quantifier square
(from de re modalities to de dicto modalities)

	\forall	$\forall \neg$	\exists	$\exists \neg$
\square	$\square \forall$	$\square \forall \neg$	$\square \exists$	$\square \exists \neg$
$\square \neg$	$\square \neg \forall$	$\square \neg \forall \neg$	$\square \neg \exists$	$\square \neg \exists \neg$
\diamond	$\diamond \forall$	$\diamond \forall \neg$	$\diamond \exists$	$\diamond \exists \neg$
$\diamond \neg$	$\diamond \neg \forall$	$\diamond \neg \forall \neg$	$\diamond \neg \exists$	$\diamond \neg \exists \neg$
$\square \vee \square \neg$	$(\square \vee \square \neg) \forall$	$(\square \vee \square \neg) \forall \neg$	$(\square \vee \square \neg) \exists$	$(\square \vee \square \neg) \exists \neg$
$\diamond \wedge \diamond \neg$	$(\diamond \wedge \diamond \neg) \forall$	$(\diamond \wedge \diamond \neg) \forall \neg$	$(\diamond \wedge \diamond \neg) \exists$	$(\diamond \wedge 仓 \neg) \exists \neg$

Aristotelian Diagrams for Combined Operators - L. Demey

	\forall	$\forall \neg$	\exists	$\exists \neg$
\square	$\square \forall$	$\square \forall \neg$	$\square \exists$	$\square \exists \neg$
$\square \neg$	$\square \neg \forall$	$\square \neg \forall \neg$	$\square \neg \exists$	$\square \neg \exists \neg$
\diamond	$\diamond \forall$	$\diamond \forall \neg$	$\diamond \exists$	$\diamond \exists \neg$
$\diamond \neg$	$\diamond \neg \forall$	$\diamond \neg \forall \neg$	$\diamond \neg \exists$	$\diamond \neg \exists \neg$
$\square \vee \square \neg$	$(\square \vee \square \neg) \forall$	$(\square \vee \square \neg) \forall \neg$	$(\square \vee \square \neg) \exists$	$(\square \vee \square \neg) \exists \neg$
$\diamond \wedge \diamond \neg$	$(\diamond \wedge \diamond \neg) \forall$	$(\diamond \wedge \diamond \neg) \forall \neg$	$(\diamond \wedge \diamond \neg) \exists$	$(\diamond \wedge \diamond \neg) \exists \neg$

- note: $(\square \vee \square \neg) \forall$ should be read as: $\square \forall \vee \square \neg \forall(\equiv \square \forall \vee \square \exists \neg)$
- $6 \times 4=24$ formulas, but again pairwise equivalent

A second extension of Buridan's octagon

	\forall	$\forall \neg$	\exists	$\exists \neg$
\square	$\square \forall$	$\square \forall \neg$	$\square \exists$	$\square \exists \neg$
$\square \neg$	$\square \neg \forall$	$\square \neg \neg \neg$	$\square \neg \exists$	$\square \neg \exists \neg$
\diamond	$\diamond \forall$	$\diamond \forall \neg$	$\diamond \exists$	$\diamond \exists \neg$
$\diamond \neg$	$\diamond \neg \forall$	$\diamond \neg \forall \neg$	$\diamond \neg \exists$	$\diamond \neg \exists \neg$
$\square \vee \square \neg$	$(\square \vee \square \neg) \forall$	$(\square \vee \square \neg) \forall \neg$	$(\square \vee \square \neg) \exists$	$(\square \vee \square \neg) \exists \neg$
$\diamond \wedge \diamond \neg$	$(\diamond \wedge \diamond \neg) \forall$	$(\diamond \wedge \diamond \neg) \forall \neg$	$(\diamond \wedge \diamond \neg) \exists$	$(\diamond \wedge \diamond \neg) \exists \neg$

- note: $(\square \vee \square \neg) \forall$ should be read as: $\square \forall \vee \square \neg \forall(\equiv \square \forall \vee \square \exists \neg)$
- $6 \times 4=24$ formulas, but again pairwise equivalent
- up to logical equivalence, we arrive at $\frac{6 \times 4}{2}=12$ formulas
\Rightarrow another Aristotelian dodecagon that extends Buridan's octagon

Aristotelian Diagrams for Combined Operators - L. Demey

- S. Chatti, 2014, Avicenna on Possibility and Necessity
- Avicenna:
- identified the 12 formulas of this second dodecagon
- identified the Aristotelian relations holding between them

Structure of the talk

(4) Bitstring Analysis

Aristotelian Diagrams for Combined Operators - L. Demey

- recall: Buridan octagon \Rightarrow bitstrings of length 6
- anchor formulas:

1. $\forall \square$
2. $\forall \diamond \wedge \exists \square \wedge \exists \diamond \neg$
3. $\forall \diamond \wedge \forall \diamond \neg$
4. $\exists \square \wedge \exists \square \neg$
5. $\forall \diamond \neg \wedge \exists \square \neg \wedge \exists \diamond$
6. $\forall \square \neg$

- second extension (hexagon \times square) \Rightarrow bitstrings of length 6
- anchor formulas: same as above (except that quantifiers and modalities should be switched)
- this shows that the second extension of Buridan's octagon remains within the latter's Boolean closure

Aristotelian Diagrams for Combined Operators - L. Demey

- first extension (square \times hexagon) \Rightarrow bitstrings of length 7
- anchor formulas:

1.	$\forall \square$	4a.
2.	$\forall \diamond \wedge \wedge \exists \exists \square \neg \wedge \exists(\diamond \wedge \diamond \neg)$	
3.	$\forall \diamond \wedge \forall \forall \diamond \neg ~$	4b.
	$\exists \square \wedge \exists \square \neg \wedge \forall(\square \vee \square \neg)$	
		5.
	$\forall \diamond \neg \wedge \exists \square \neg \wedge \exists \diamond$	
6.	$\forall \square \neg$	

- same as for the octagon, except that 4 has been 'split' into 4 a and 4b
- the first extension is essentially more complex than the original octagon
- the first extension does not fit within the octagon's Boolean closure
- Boolean closure of the octagon:
$2^{6}-2=62$ formulas
- Boolean closure of the first extension:
$2^{7}-2=126$ formulas
- why so many additional formulas?
- formulas where the quantifier does not distribute over the modality
- cf. anchor formulas 4a and 4b

Structure of the talk

(5) Conclusion

- natural extension from a technical (and historical?) perspective:
- take Boolean closure of both square components
- so we get hexagon \times hexagon $\Rightarrow \frac{6 \times 6}{2}=18$ formulas
- e.g. "some but not all men are contingently philosophers"
- overview:

Buridan	8-gon	quantifier square	\times	modality square	6
"Al-Farabi"	8-gon	quantifier square	\times	modality square	6
"Buridan"	12-gon	quantifier square	\times	modality hexagon	7
"Avicenna"	12-gon	quantifier square	\times	temporal hexagon	7
"Avicenna"	12-gon	modality hexagon	\times	quantifier square	6
???	18-gon	quantifier hexagon	\times	modal hexagon	7

Thank you!

More info: www.logicalgeometry.org

