KU LEUVEN

Duality and Lexicalization in Medieval Squares of Opposition

Lorenz Demey

3rd CLAW/DWMC Symposium, 31 May 2017

- two issues related to the square of opposition
- Aristotelian vs. duality relations
- (non-)lexicalization
- each of them separately is (relatively) well-understood
- this talk: explore the interaction between these two issues
- argue that they mutually reinforce each other
- use this interaction to shed new light on some issues in medieval logic
- based on joint work with Hans Smessaert and Dany Jaspers

Structure of the talk

(1) Aristotelian Relations and Duality Relations
(2) Lexicalization in Aristotelian Diagrams
(3) The Interaction between Duality and Lexicalization
(4) Duality and Lexicalization in Medieval Logic

Structure of the talk

(1) Aristotelian Relations and Duality Relations

(2) Lexicalization in Aristotelian Diagrams

(3) The Interaction between Duality and Lexicalization
(4) Duality and Lexicalization in Medieval Logic

Duality and Lexicalization in the Square - L. Demey

Aristotelian diagrams and relations

- an Aristotelian diagram visualizes some formulas/expressions and the Aristotelian relations holding between them
- two propositions are said to be
contradictory iff they cannot be true together and they cannot be false together,
contrary iff they cannot be true together but they can be false together,
subcontrary iff they can be true together but they cannot be false together,
in subalternation iff the first proposition entails the second but the second doesn't entail the first

(assumption of existential import: there exists at least one S)

The duality relations

- many Aristotelian diagrams not only exhibit Aristotelian relations, but also duality relations among their elements
- view a proposition φ as the output of some n-ary operator O on some inputs $x_{1}, \ldots, x_{n}: \quad \varphi=O\left(x_{1}, \ldots, x_{n}\right)$
- given two operators O_{1}, O_{2}, we say that
O_{2} is the internal negation of O_{1}
iff $O_{2}\left(x_{1}, \ldots, x_{n}\right) \equiv O_{1}\left(\neg x_{1}, \ldots, \neg x_{n}\right)$
O_{2} is the external negation of O_{1}
iff $O_{2}\left(x_{1}, \ldots, x_{n}\right) \equiv \neg O_{1}\left(x_{1}, \ldots, x_{n}\right)$
O_{2} is the dual of O_{1}
iff $O_{2}\left(x_{1}, \ldots, x_{n}\right) \equiv \neg O_{1}\left(\neg x_{1}, \ldots, \neg x_{n}\right)$

Conceptual independence of Aristotelian \& duality relations 12

- D: defined for formulas of the form $\varphi=O\left(x_{1}, \ldots, x_{n}\right)$

A: defined for all formulas

- D: symmetric: if $R(\varphi, \psi)$ then $R(\psi, \varphi)$

A: subalternation is antisymmetric: if $S A(\varphi, \psi)$ then $\operatorname{not} S A(\psi, \varphi)$

- D: deterministic: if $R\left(\varphi, \psi_{1}\right)$ and $R\left(\varphi, \psi_{2}\right)$ then $\psi_{1} \equiv \psi_{2}$

A: a formula can have multiple contraries

- D: serial: for all $\varphi=O\left(x_{1}, \ldots, x_{n}\right)$, there exists ψ such that $R(\varphi, \psi)$

A: a formula can have no contraries at all

- D: four by four: $\{O, \operatorname{INEG}(O), \operatorname{ENEG}(O), \operatorname{DUAL}(O)\} \quad$ (Klein 4-group) A: squares, but also hexagons, octagons, etc.
- D: not sensitive to the details of the underlying logical system S A: highly logic-sensitive: contradictories in S_{1}, contraries in S_{2}
- Jacoby-Sesmat-Blanché (JSB) hexagon
- Boolean closure of the square

Aristotelian and duality relations: conclusion

- conceptual independence of Aristotelian and duality relations
- nevertheless: many (all?) squares in the philosophical/logical literature are simultaneously Aristotelian squares and duality squares
- classical examples (cf. middle ages): quantifiers, modalities
- contemporary examples: definite descriptions, public announcement logic

$\neg[$ the $x: A x] \neg B x \quad \neg[$ the $x: A x] B x$

KULEUVEN
(2) Lexicalization in Aristotelian Diagrams
(3) The Interaction between Duality and Lexicalization
(4) Duality and Lexicalization in Medieval Logic

Duality and Lexicalization in the Square - L. Demey

Example 1: the quantifier square

- the A-corner is primitively lexicalized as all
- the I-corner is primitively lexicalized as some
- the E-corner is primitively lexicalized as no
- the O-corner is not primitively lexicalized
all S are $P \quad$ no S are P
some S are $P \quad$ some S are not P
- the A-corner is primitively lexicalized as necessary
- the I-corner is primitively lexicalized as possible
- the E-corner is primitively lexicalized as impossible
- the O-corner is not primitively lexicalized

necessary p impossible p

possible $p \quad$ possible not p

Non-lexicalization of the O-corner

- not just with quantifiers and modalities, but also in other lexical domains
- all, some, no vs. some not
- necessary, possible, impossible vs. possible not
- everywhere, somewhere, nowhere vs. somewhere not
- everybody, somebody, nobody vs. somebody not
- always, sometimes, never vs. sometimes not
- both, either, neither vs. either not
- not just in English, but also in other natural languages
- first author to point this out: Thomas Aquinas, In Arist. De Int. (Expositio libri Peryermeneias), Book I, Lesson 10

Sicut autem supra dictum est, quandoque aliquid attribuitur universali ratione ipsius naturae universalis; et ideo hoc dicitur praedicari de eo universaliter, quia scilicet ei convenit secundum totam multitudinem in qua invenitur; et ad hoc designandum in affirmativis praedicationibus adinventa est haec dictio, omnis [...] In negativis autem praedicationibus adinventa est haec dictio, nullus [...]

Quandoque autem attribuitur universali aliquid vel removetur ab eo ratione particularis; et ad hoc designandum, in affirmativis quidem adinventa est haec dictio, aliquis vel quidam, per quam designatur quod praedicatum attribuitur subiecto universali ratione ipsius particularis; sed quia non determinate significat formam alicuius singularis, sub quadam indeterminatione singulare designat; unde et dicitur individuum vagum. In negativis autem non est aliqua dictio posita, sed possumus accipere, non omnis

Explanatory context

- systematic explanation of the non-lexicalization of the O-corner
- Horn: pragmatic (Gricean) account
- Jaspers: JSB hexagon $=$ square + Y-corner (below), U-corner (above)
- the Y-corner is (often) co-lexicalized with the I-corner
- the U-corner is not lexicalized

Seuren and Jaspers' account

- recursive partitioning of the universe
- not lexicalized: disjunction across subuniverse
- quantifier U-corner: all or no
- modal U-corner: necessary or impossible
- quantifier O-corner: some 1 not \equiv some $_{2}$ or no
- modal O-corner: possible 1 not \equiv possible $_{2}$ or impossible

(3) The Interaction between Duality and Lexicalization
- since the O-corner is not primitively lexicalized, it needs to be expressed in terms of one of the other corners
- in the literature we find at least two versions of the square

all S are P no S are P

some S are P not all S are P
- some S are not $P=\operatorname{INEG}($ some S are $P)$
- not all S are $P=\operatorname{ENEG}($ all S are $P)$

- $\mathrm{O}=\operatorname{INEG}(\mathrm{I})$ and $\mathrm{O}=\operatorname{ENEG}(\mathrm{A})$, but also $\mathrm{O}=\operatorname{DUAL}(\mathrm{E})$
- not no S are not P
- cognitive processing difficulties

- the O-corner is itself not primitively lexicalized
- but it can be non-primitively expressed in three ways, viz. as a duality-theoretic variant of each of the three other corners

- A is primitively lexicalized as all
- $A=\operatorname{INEG}(E)$
- E is primitively lexicalized as no
- so A is non-primitively lexicalized as no not
- $\mathrm{A}=\operatorname{DUAL}(\mathrm{I})$
- I is primitively lexicalized as some
- so A is non-primitively lexicalized as not some not
- $A=\operatorname{ENEG}(O)$
- O is itself not primitively lexicalized
- so A gets no additional non-primitive lexicalization

	INEG(some)	some not
O-corner	ENEG(all)	not all
	DUAL(no)	not no not
	primitive	all
A-corner	INEG(no)	no not
	DUAL(some)	not some not
	primitive	some
I-corner	ENEG(no)	not no
	DUAL(all)	not all not
	primitive	no
E-corner	INEG(all)	all not
	ENEG(some)	not some

| A | INEG(A) | all S are P
 not some S are not P
 no S are not P
 not some S are P |
| :---: | :---: | :---: | :---: |
| not S are P | | |

Duality and lexicalization

- interaction between duality and lexicalization
- the square has 4 corners
- each corner has only 3 primitive formulations
(Klein 4-group)
(lexicalization constraint)
- the A-, I- and E-corner
- primitive lexicalization
- duality-theoretic variants of the two other primitively lexicalized corners
- the O-corner
- no primitive lexicalization
- duality-theoretic variants of the three other corners
- lexicalization has effects on all corners of the square (not just O)
- what if O did have a primitive lexicalization, e.g. nall?
- each of the four corners would have four equivalent formulations:
- one primitive lexicalization
- duality-theoretic variants of the three other corners

A	INEG(A)
DUAL(I)	ENEG(I)
INEG(E)	E
ENEG(O)	DUAL(O)

all S are P	all S are not P
not some S are not P	not some S are P
no S are not P	no S are P
not nall S are P	

(4) Duality and Lexicalization in Medieval Logic

- individual authors:
- Peter Abelard
- William of Sherwood
$1205-1270$
- Peter of Spain

1205-1277

- Thomas Aquinas

1225-1274

- William of Ockham

1287-1347

- John Buridan
$1300-1360$
- John Wyclif
- Antoine Arnauld \& Pierre Nicole (Port-Royal)

1330-1384

- Jacques Maritain (neo-Thomism)
- special topic of interest: mnemonics
- mnemonic words for the square's four corners
- mnemonic verses for the equipollences
- mnemonic verses for the Aristotelian/duality interplay

Duality and Lexicalization in the Square - L. Demey

KULEUVEN

- Dialectica (ed. L. M. de Rijk, 1956)
- discussion of modal logic (singular propositions)
- four ordines propositionum:

$$
\begin{array}{rrrr}
\text { 'possibile est Socratem esse album' } & \text { 'non impossibile est Socratem esse abum' } & \text { 'non necesse est Socratcm non esse album } \\
\text { 'non possibile est Socratem esse album' } & \text { 'impossibile est esse album' } & \text { 'necesse est non esse album' } \\
\text { 'possibile est Socratem non esse album' 'non, impossibile est Socratem non esse album' } & \text { 'non necesse est Socratem esse album' } \\
\text { 'non possibile est Socratem non esse album' } & \text { 'impossibile est Socratem non esse album' } & \text { 'necesse est Socratem esse album'. }
\end{array}
$$

- equivalence: Sunt enim omnes cuiuslibet ordinis propositiones ad se aequipollentes
- contradiction: Et sunt quidem propositiones secundi dividentes cum propositionibus primi, et quarti cum tertii
- subalternation: Inferunt autem propositiones quarti propositiones primi, sed non convertitur; et propositiones secundi propositiones tertii, sed non convertitur
- Abelard had all the ingredients for the purely modal square (i.e. singular propositions, no quantifiers):
- the four sets of three equivalent propositions
- the Aristotelian relations between (the propositions in) those sets
- the square as an actual two-dimensional diagram
- square for the quantifiers in Glossae super Peri Hermeneias
- square for the 'binary' quantifiers (both, neither, etc.) in the Dialectica
- however, as far as we know, he never drew the modal square with three equivalent propositions per corner
- Abelard tried to extend his system to quantified modal propositions, but those attempts are "rather confused" (Lagerlund 2000)
- Abelard's quantifier square cannot have three propositions per corner:
- e.g. some not and not all are not logically equivalent for Abelard
- the former has existential import, the latter does not

Duality and Lexicalization in the Square - L. Demey

Peter of Spain on the quantifier square

- Summulae Logicales (ed. L. M. de Rijk, 1973): quantifier square with one proposition per corner

Duality and Lexicalization in the Square - L. Demey

Peter of Spain on duality in the quantifier square

- si alicui signo preponatur negatio, equipollet suo contradictorio
- Peter's (only) example:
- non omnis homo currit
- quidam homo non currit
- si alicui signo universali postponatur negatio, equipollet suo contrario
- one of Peter's examples:
- omnis homo non est animal
- nullus homo est animal
- si alicui signo universali vel particulari preponatur et postponatur negatio, equipollet suo subalterno
- one of Peter's examples:
- non omnis homo non currit
- quidam homo currit

Peter of Spain on the quantifier square

- combine:
- the quantifier square (with one proposition per corner)
- the rules for duality in the quantifier square
- Peter had all the resources to draw a quantifier square with three equivalent propositions per corner
- however, as far as we know, he never actually did so
- in some manuscripts of the Summulae, we find mnemonic versions of the rules as well as their results:
- Prae contradic, post contra, prae postque subalter
- non omnis - quidam non; omnis non quasi nullus; non nullus - quidam; sed nullus non valet omnis; non aliquis - nullus; non quidam non valet omnis;
(non alter - neuter; neuter non prestat uterque.)
- verse for the rule (Prae contradic, post contra, prae postque subalter)
- also in William of Sherwood, Introductiones in Logicam
- also in John Wyclif, Tractatus de Logica
- verse for the results: different (clearer!) version in Sherwood
- Equivalent omnis, nullus non, non aliquis non.

Nullus, non aliquis, omnis non equiparantur. Quidam, non nullus, non omnis non sociantur. Quidam non, non nullus non, non omnis adherent.

- 12th and 13th century: "a veritable craze for versifying" (Paetow 1910)
- the Summulae's "greater success may be due to the fact that it contains more and better mnemonic verses than William of Shyreswood's work." (Kneale and Kneale 1964)

Internal negation and (sub)contrariety

- recall the following rule from Peter:
si alicui signo universali postponatur negatio, equipollet suo contrario
- one might claim that Peter has forgotten the analogous rule:
si alicui signo particulari postponatur negatio, equipollet suo subcontrario
- given the non-lexicalization of the O-corner, the latter rule is trivial
- first rule: useful information about Latin/English
- $\operatorname{INEG}(A)=$ omnis non $=$ nullus $=E$
- $\operatorname{inEG}(A)=$ all not $=n o=E$
- second rule: trivial
- $\operatorname{INEG}(\mathrm{I})=$ quidam non $=$ quidam non $=0$
- $\operatorname{INEG}(\mathrm{I})=$ some not $=$ some not $=0$

Peter of Spain on the modal square

- Peter draws a modal square with four equivalent propositions per corner
- no need to differentiate between the first two in each corner:
- in terms of possibile and contigens
- 'contingens' convertitur cum 'possibili'
- essentially: modal square with three equivalent propositions per corner

(only singular modal propositions; no quantified modal propositions)

Mnemonic terms for the corners of the modal square

- purpurea, amabimus, illiace, edentuli
- each word stands for a corner of the modal square (with its four equivalent propositions)
- each syllable stands for a modality (cf. next slide)
- each vowel stands for a combination of negations (cf. next slide)
- contrast with the more well-known barbara, celarent, etc.:
- each word stands for a syllogism (three non-equivalent propositions)
- each syllable stands for a proposition (premise/premise/conclusion)
- each vowel stands for a quantifier (AEIO convention)
- popular throughout history:
- Peter of Spain
- William of Sherwood
- (Pseudo-)Aquinas
- Port-Royal Logic
- Jacques Maritain and other neo-Thomists

Mnemonic terms for the corners of the modal square

- purpurea, amabimus, illiace, edentuli
- the order of the syllables is significant:
- syllable $1 \sim$ a proposition containing possibile
- syllable $2 \sim$ a proposition containing contingens
- syllable $3 \sim$ a proposition containing impossibile
- syllable $4 \sim$ a proposition containing necesse
- independent convention for the vowels:

Klein 4-group:

- A: no negations at all
- E: negation after the modality
- I: negation before the modality
- U: negation before and after the modality
vowels 1 and 2 always coincide!

Duality and Lexicalization in the Square - L. Demey

John Buridan on the quantifier square

- Summulae de Dialectica (trans. G. Klima, 2001): quantifier square with six propositions per corner

Duality and Lexicalization in the Square - L. Demey

- Buridan has a quantifier square with six propositions per corner
- consider, for example, the A-corner:
- Omnis homo currit
- Nullus homo non currit
- Non quidam homo non currit
- Uterque istorum currit
- Totus homo est animal
- Quilibet homo est animal
- the last three are only relevant from a broader linguistic perspective: demonstratives, 'binary' quantifiers, mass nouns, free choice
- quantifier square with three equivalent propositions per corner!
- Compendium totius Logicae $=$ later summary of the Summulae (by John Dorp in 1499, so 150 years after Buridan's death)
- the Compendium contains
- a quantifier square with three equivalent propositions per corner
- a modal square with three equivalent propositions per corner

Duality and Lexicalization in the Square - L. Demey

Buridan's octagon for quantified modal propositions

Duality and Lexicalization in the Square - L. Demey

KU LEUVEN

Buridan's octagon for quantified modal propositions

- first CLAW/DWMC symposium (Demey \& Steinkrüger 2017):
- Buridan's octagon can be understood as capturing the interaction between a quantifier square and a modal square
- Buridan himself was already well aware of this
octagon $=$ quantifier square \times modal square

9 propositions	3 propositions		
per corner	$\times 3$ per corner		per corner
:---:			

- first symposium: focus on $9=3 \times 3$
- today: why 3 to begin with?

	quantifier square with 3 equivalent propositions per corner	modal square with 3 equivalent propositions per corner
Peter Abelard	no!	no, but can be constructed
Peter of Spain	no, but can be constructed	yes
John Buridan	yes	yes

Thank you!

More info: www.logicalgeometry.org

Duality and Lexicalization in the Square - L. Demey

