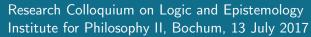
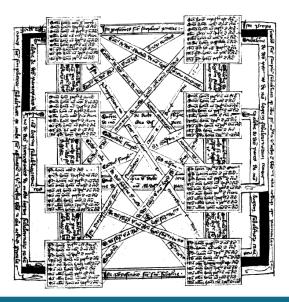
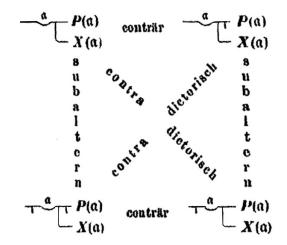


The Logical Geometry of Russell's Theory of Definite Descriptions

Lorenz Demey







Some Examples...

A Formal Concept View of Abstract Argumentation

Leila Amgoud and Henri Prade

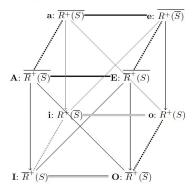
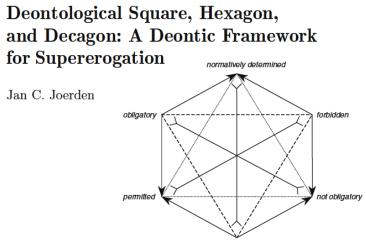


Fig. 1. Cube of oppositions between 8 remarkable sets of arguments

The Logical Geometry of Definite Descriptions – L. Demey

5



normatively indifferent

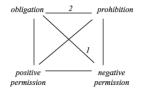
The Logical Geometry of Definite Descriptions – L. Demey

The European Journal of International Law Vol. 17 no.2 © EJIL 2006; all rights reserved

The Definition of 'Norm Conflict' in International Law and Legal Theory

Erich Vranes*

The possible set of inter-relations can be illustrated by using the so-called deontic square, which in fact relies on the logic square known since Greek antiquity,⁸⁵ and which was arguably first used in deontic logic by Bentham:⁸⁶



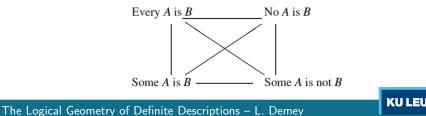
KU LEU

Universal vs. particular reasoning: a study with neuroimaging techniques

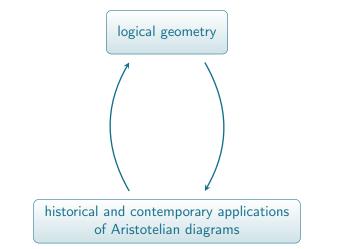
V. MICHELE ABRUSCI*, Dipartimento di Filosofia, Università di Roma Tre, Via Ostiense 234, 00146 Roma, Italy

CLAUDIA CASADIO[†], Dipartimento di Filosofia, Università di Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy

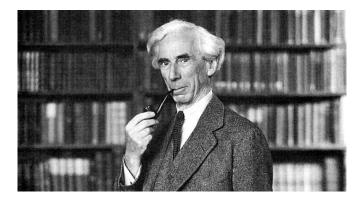
M. TERESA MEDAGLIA[‡] and CAMILLO PORCARO[§], Inst. Neuroscience, Newcastle University, Medical School Framlington Place, Newcastle upon Tyne, NE2 4HH, UK



KU LEUVEN



The Logical Geometry of Definite Descriptions – L. Demey



"ever since the beginning of the seventeenth century, almost every serious intellectual advance has had to begin with an attack on some Aristotelian doctrine; in logic, this is still true at the present day"

The Logical Geometry of Definite Descriptions – L. Demey

Introduction

- Preliminaries about Definite Descriptions and Logical Geometry
 - 3 Basic Aristotelian Diagrams for Definite Descriptions
 - Definite Descriptions and Categorical Statements
- 5 The Role of Existence and Uniqueness

(if time permits)

KU LEUVE

6 Conclusion

The Logical Geometry of Definite Descriptions - L. Demey

12

Introduction

Preliminaries about Definite Descriptions and Logical Geometry

- 3 Basic Aristotelian Diagrams for Definite Descriptions
- Definite Descriptions and Categorical Statements
- 5 The Role of Existence and Uniqueness

(if time permits)

KU LEUVEN

6 Conclusion

The Logical Geometry of Definite Descriptions - L. Demey

- definite descriptions in natural language:
 - the president of the United States
 - the man standing over there
 - \bullet the so-and-so
- they can occur in
 - subject position
 - predicate position

e.g. The president was in Hamburg last week. e.g. Donald Trump is currently still the president.

KU LEU

- Russell's quantificational analysis of 'the A is B' $\exists x \Big(Ax \land \forall y (Ay \to y = x) \land Bx \Big)$
- Neale's restricted quantifier notation

[the x: Ax]Bx

The Logical Geometry of Definite Descriptions – L. Demey

- [the $x: Ax]Bx \equiv_{FOL} (EX) \land (UN) \land (UV)$
 - (EX) $\exists x A x$ (UN) $\forall x \forall y ((Ax \land Ay) \rightarrow x = y)$ (UV) $\forall x (Ax \rightarrow Bx)$

there exists at least one A there exists at most one A all $A\mathbf{s}$ are B

• much of the subsequent literature on Russell's quantificational theory of definite descriptions has focused on one of these three conditions

The Logical Geometry of Definite Descriptions – L. Demey

۰	for a given logical system S (with Boolean connectives \land, \lnot and a					
	model-theoretical semantics \models), the formulas $arphi,\psi\in\mathcal{L}_{S}$ are					
	S-contradictory	iff	$S\models \neg(\varphi \wedge \psi)$	and	$S\models \neg(\neg\varphi\wedge\neg\psi)$	
	S-contrary	iff	$S\models \neg(\varphi\wedge\psi)$	and	$S \not\models \neg (\neg \varphi \land \neg \psi)$	
	S-subcontrary	iff	$S \not\models \neg(\varphi \land \psi)$	and	$S \models \neg (\neg \varphi \land \neg \psi)$	
	in S-subalternation	iff	$S\models\varphi\rightarrow\psi$	and	$S \not\models \psi \to \varphi$	

• ' φ and ψ cannot be true together' \Rightarrow there exists no S-model \mathbb{M} such that $\mathbb{M} \models \varphi \land \psi$ \Rightarrow for all S-models \mathbb{M} it holds that $\mathbb{M} \models \neg(\varphi \land \psi)$ $\Rightarrow \mathsf{S} \models \neg(\varphi \land \psi)$

• ' φ and ψ can be false together' \Rightarrow there exists a S-model \mathbb{M} such that $\mathbb{M} \models \neg \varphi \land \neg \psi$ $\Rightarrow \mathsf{S} \not\models \neg (\neg \varphi \land \neg \psi)$

The Logical Geometry of Definite Descriptions - L. Demey

Aristotelian Diagrams

- Aristotelian diagram visualizes:
 - a (finite) set of S-contingent formulas
 - the Aristotelian relations holding among those formulas (in S)
- some basic examples from CPL (classical propositional logic):
 - classical square
 - degenerate square
 - Jacoby-Sesmat-Blanché (JSB) hexagon
 - Buridan octagon
- visual code:

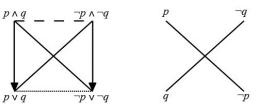
contradiction ______ subcontrariety

contrariety _____ subalternation _____

KU LEUVEN

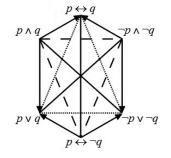
The Logical Geometry of Definite Descriptions – L. Demey

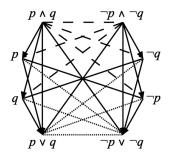
Some Basic Examples



The Logical Geometry of Definite Descriptions - L. Demey

Some Basic Examples

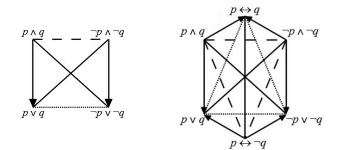




The Logical Geometry of Definite Descriptions - L. Demey

Boolean Closure

- a diagram is *Boolean closed* iff it contains every contingent Boolean combination of its formulas (up to logical equivalence)
- Boolean closure of a diagram D = smallest Boolean closed diagram that contains D as a subdiagram



The Logical Geometry of Definite Descriptions – L. Demey

KU LEUV

Bitstrings

- for a given logic S and fragment \mathcal{F} of formulas, define the partition $\Pi_{\mathsf{S}}(\mathcal{F}) := \{ \bigwedge_{\varphi \in \mathcal{F}} \pm \varphi \} - \{ \bot \}$
 - mutually exclusive: $S \models \neg(\alpha_i \land \alpha_j)$ for distinct $\alpha_i, \alpha_j \in \Pi_S(\mathcal{F})$
 - jointly exhaustive: $S \models \bigvee \Pi_S(\mathcal{F})$
- every $\varphi \in \mathcal{F}$ is S-equivalent to a disjunction of $\Pi_{\mathsf{S}}(\mathcal{F})$ -formulas: $\varphi \equiv_{\mathsf{S}} \bigvee \{ \alpha \in \Pi_{\mathsf{S}}(\mathcal{F}) \mid \mathsf{S} \models \alpha \to \varphi \}$ (relativized disjunctive normal form)
- bitstrings keep track which formulas enter into this disjunction
 - suppose $\Pi_{\mathsf{S}}(\mathcal{F}) = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$
 - if $\varphi \equiv_{\mathsf{S}} \alpha_2 \lor \alpha_3 \lor \alpha_5$, then represent φ as the bitstring 01101
- \bullet bitstrings measure the Boolean complexity of ${\mathcal F}$
 - bitstring length: $|\Pi_{\mathsf{S}}(\mathcal{F})|$
 - the Boolean closure of ${\cal F}$ contains $2^{|\Pi_{\cal S}({\cal F})|}-2$ contingent formulas

1 Introduction

- 2) Preliminaries about Definite Descriptions and Logical Geometry
- 3 Basic Aristotelian Diagrams for Definite Descriptions
 - 4 Definite Descriptions and Categorical Statements
- 5 The Role of Existence and Uniqueness

(if time permits)

6 Conclusion

The Logical Geometry of Definite Descriptions - L. Demey

An Aristotelian Square for Definite Descriptions

- Russell: what is the negation of 'the A is B'?
 - law of excluded middle \Rightarrow 'the A is B' is true or 'the A is not B' is true
 - but if there are no As, then both statements seem to be false
- Russell: 'the A is not B' is ambiguous (scope)

•
$$\neg \exists x \Big(Ax \land \forall y (Ay \to y = x) \land Bx \Big)$$
 $\neg [\text{the } x : Ax] Bx$
• $\exists x \Big(Ax \land \forall y (Ay \to y = x) \land \neg Bx \Big)$ [the $x : Ax] \neg Bx$

• first interpretation:

- Boolean negation of 'the A is B'
- if there are no As, then [the x: Ax]Bx is false, \neg [the x: Ax]Bx is true
- second interpretation:
 - if there are no As, then [the x: Ax]Bx and [the $x: Ax]\neg Bx$ are false
 - $\bullet\,$ not the Boolean negation of 'the A is B'

The Logical Geometry of Definite Descriptions - L. Demey

An Aristotelian Square for Definite Descriptions

- crucial insight: the two interpretations of 'the A is not B' distinguished by Russell stand in different Aristotelian relations to 'the A is B'
 - [the x: Ax]Bx and \neg [the x: Ax]Bx are FOL-contradictory
 - [the x: Ax]Bx and [the x: Ax] $\neg Bx$ are FOL-contrary
- cf. Haack (1965), Speranza and Horn (2010, 2012), Martin (2016)
- natural move: consider a fourth formula (with two negations)

$$\exists x (Ax \land \forall y (Ay \to y = x) \land Bx)$$
 [the $x : Ax]Bx$

$$\neg \exists x (Ax \land \forall y (Ay \to y = x) \land Bx)$$

$$\neg [the $x : Ax]Bx$

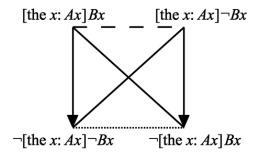
$$\exists x (Ax \land \forall y (Ay \to y = x) \land \neg Bx)$$
 [the $x : Ax]\neg Bx$

$$\neg \exists x (Ax \land \forall y (Ay \to y = x) \land \neg Bx)$$

$$\neg [the $x : Ax]\neg Bx$$$$$

• in FOL, these four formulas constitute a classical square of opposition

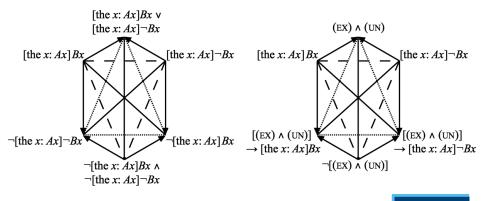
The Logical Geometry of Definite Descriptions – L. Demey



- \bullet this square is fully defined in 'ordinary' FOL \Rightarrow acceptable for Russell
- summarizes Russell's solution to puzzle on law of excluded middle
- interesting new formula: \neg [the x: Ax] $\neg Bx$
 - expresses a weak version of 'the A is B' \neg [the x: Ax] $\neg Bx \equiv_{FOL} [(EX) \land (UN)] \rightarrow$ [the x: Ax]Bx
 - ▶ if there is exactly one A, [the x: Ax]Bx and ¬[the x: Ax]¬Bx always have the same truth value
 - in all other cases, [the $x: Ax] \neg Bx$ is always false, whereas \neg [the $x: Ax] \neg Bx$ is always true
 - self-predication principles: what is the logical status of 'the A is A'?
 - ▶ [the *x*: *Ax*]*Ax* is not a FOL-tautology
 - \neg [the x: Ax] $\neg Ax$ is a FOL-tautology

Boolean Closure of the Definite Description Square

- the Aristotelian square for definite descriptions is not Boolean closed
- its Boolean closure is a JSB hexagon
- importance of the (EX)- and (UN)-conditions



The Logical Geometry of Definite Descriptions – L. Demey

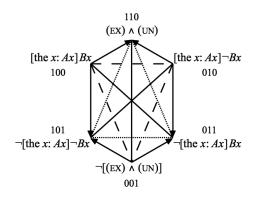
Bitstring Analysis

- consider the formulas in the definite descripton square/hexagon
- these formulas induce the partition Π_{TDD}^{FOL} :
 - $\alpha_1 := [\text{the } x : Ax]Bx$
 - $\alpha_2 := [\text{the } x : Ax] \neg Bx$
 - $\alpha_3 := \neg[(EX) \land (UN)]$
- example bitstring representations:
 - [the x: Ax] $Bx \equiv_{FOL} \alpha_1$ \rightarrow gets represented as 100
 - \neg [the x: Ax] $\neg Bx \equiv_{FOL} \alpha_1 \lor \alpha_3$

 \rightsquigarrow gets represented as 101

- logical perspective: the Boolean closure of the square/hexagon has $2^3 - 2 = 6$ contingent formulas
- conceptual/linguistic perspective: recursive partitioning of logical space

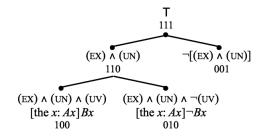
KU LEUVEN



The Logical Geometry of Definite Descriptions – L. Demey

Linguistic Relevance of the Bitstring Analysis

- view Π_{TDD}^{FOL} as the result of a process of recursively partitioning and restricting logical space (Seuren, Jaspers, Roelandt)
 - \bullet divide the logical universe: (EX) \wedge (UN) vs. $\neg[(EX) \wedge (UN)]$
 - $\bullet\,$ focus on the logical subuniverse defined by $(EX)\wedge(UN)$
 - recursively divide this subuniverse: [the x: Ax]Bx vs. [the x: Ax] $\neg Bx$



The Logical Geometry of Definite Descriptions – L. Demey

KULEU

- \bullet another look at the ambiguity pointed out by Russell
 - 'the A is B' unambiguously corresponds to [the x: Ax]Bx = 100
 - relative to the entire universe, its negation is \neg [the x: Ax]Bx = 011
 - relative to the subuniverse (110), its negation is [the x: Ax] $\neg Bx = 010$

 $\Rightarrow \mathsf{Russell's two interpretations of 'the } A \text{ is not } B' \text{ correspond to} \\ \mathsf{negations of 'the } A \text{ is } B' \text{ relative to two different universes} \\ \text{(semantic instead of syntactic characterization)} \end{cases}$

• Seuren and Jaspers's (2014) defeasible Principle of Complement Selection: "Natural complement selection is primarily relative to the proximate subuniverse, but there are overriding factors."

31

Introduction

- 2 Preliminaries about Definite Descriptions and Logical Geometry
- 3 Basic Aristotelian Diagrams for Definite Descriptions
- Optimite Descriptions and Categorical Statements
 - 5 The Role of Existence and Uniqueness

(if time permits)

6 Conclusion

The Logical Geometry of Definite Descriptions - L. Demey

• the four categorical statements from syllogistics:

А	all A s are B	$\forall x (Ax \to Bx)$
1	some As are B	$\exists x (Ax \land Bx)$
Е	no A s are B	$\forall x (Ax \to \neg Bx)$
0	some A s are not B	$\exists x (Ax \land \neg Bx)$

 $\forall x(Ax \rightarrow Bx)$ $\exists x(Ax \wedge Bx)$ $\forall x(Ax \rightarrow \neg Bx)$

already implicit in the definite description formulas

• [the
$$x: Ax$$
] $Bx \equiv_{FOL} (EX) \land (UN) \land (UV)$
• \neg [the $x: Ax$] $Bx \equiv_{FOL} \neg (EX) \lor \neg (UN) \lor \neg (UV)$
• [the $x: Ax$] $\neg Bx \equiv_{FOL} (EX) \land (UN) \land (UV^*)$
• \neg [the $x: Ax$] $\neg Bx \equiv_{FOL} \neg (EX) \lor \neg (UN) \lor \neg (UV^*)$
(UV) $\equiv_{FOL} \forall x(Ax \rightarrow Bx) = A$
 $\neg (UV) \equiv_{FOL} \forall x(Ax \land \neg Bx) = O$
(UV^{*}) $\equiv_{FOL} \forall x(Ax \rightarrow \neg Bx) = E$
 $\neg (UV^*) \equiv_{FOL} \exists x(Ax \land Bx) = I$

The Logical Geometry of Definite Descriptions – L. Demey

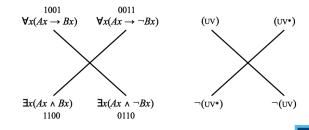
Bitstring Analysis and Degenerate Square

- first-order logic (FOL) has no existential import
- the categorical statements induce the partition Π_{CAT}^{FOL} :

•
$$\beta_1 := \exists x A x \land \forall x (A x \to B x)$$

• $\beta_2 := \exists x (A x \land B x) \land \exists x (A x \land \neg B x)$
• $\beta_3 := \exists x A x \land \forall x (A x \to \neg B x)$
• $\beta_4 := \neg \exists x A x$ (recursive partitioning)

• the categorical statements constitute a degenerate square



The Logical Geometry of Definite Descriptions – L. Demey

Definite Descriptions and Categorical Statements

- there is a subalternation from [the x: Ax]Bx to the A-statement
 - FOL \models [(ex) \land (un) \land (uv)] \rightarrow (uv)
 - but not vice versa
- there is a subalternation from [the x : Ax]Bx to the I-statement
 - FOL \models [(EX) \land (UV)] $\rightarrow \neg$ (UV*) so a fortiori FOL \models [(EX) \land (UN) \land (UV)] $\rightarrow \neg$ (UV*)
 - but not vice versa
- and so on...
- summary:

the interaction between the definite description formulas and the categorical statements gives rise a Buridan octagon

The Logical Geometry of Definite Descriptions – L. Demey

KU LEUV



Bitstring Analysis

- \bullet the definite descriptions induce the partition $\Pi_{TDD}^{\rm FOL}$
- \bullet the categorical statements induce the partition $\Pi_{CAT}^{\rm FOL}$

 \Rightarrow together, they induce the partition $\Pi_{\textit{OCTA}}^{\textit{FOL}} = \Pi_{\textit{TDD}}^{\textit{FOL}} \wedge_{\textit{FOL}} \Pi_{\textit{CAT}}^{\textit{FOL}}$

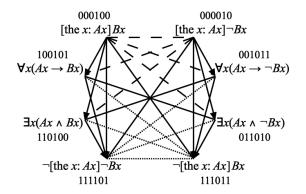
•
$$\gamma_1 := \exists x \exists y (Ax \land Ay \land x \neq y) \land \forall x (Ax \to Bx)$$

• $\gamma_2 := \exists x (Ax \land Bx) \land \exists x (Ax \land \neg Bx)$
• $\gamma_3 := \exists x \exists y (Ax \land Ay \land x \neq y) \land \forall x (Ax \to \neg Bx)$
• $\gamma_4 := [\text{the } x : Ax] Bx$
• $\gamma_5 := [\text{the } x : Ax] \neg Bx$

- $\gamma_6 := \neg \exists x A x$
- Π_{OCTA}^{FOL} is a refinement of Π_{TDD}^{FOL} $\Rightarrow \gamma_4 = \alpha_1 \text{ and } \gamma_5 = \alpha_2$, while $\gamma_1 \lor \gamma_2 \lor \gamma_3 \lor \gamma_6 \equiv_{\text{FOL}} \alpha_3$
- Π_{OCTA}^{FOL} is a refinement of Π_{CAT}^{FOL} $\Rightarrow \gamma_2 = \beta_2 \text{ and } \gamma_6 = \beta_4$, while $\gamma_1 \lor \gamma_4 \equiv_{\text{FOL}} \beta_1 \text{ and } \gamma_3 \lor \gamma_5 \equiv_{\text{FOL}} \beta_3$

The Logical Geometry of Definite Descriptions – L. Demey

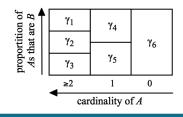
- $\bullet~\Pi_{\textit{OCTA}}^{\rm FOL}$ allows us to encode every formula of the Buridan octagon
- the Boolean closure of this octagon has $2^6 2 = 62$ contingent formulas



The Logical Geometry of Definite Descriptions – L. Demey

Bitstring Analysis

- $\bullet~\Pi_{\textit{OCTA}}^{\rm FOL}$ is ordered along two semi-independent dimensions
 - $\bullet\,$ the cardinality of (the extension of) A
 - the proportion of As that are B
- *semi*-independent: higher cardinalities allow for more fine-grained proportionality distinctions
- ongoing work on linguistic aspects:
 - plausible partitioning process?
 - split the ' \geq 2'-region into ' \geq 3'- and '= 2'-subregions ('both', 'neither')



The Logical Geometry of Definite Descriptions – L. Demey

KU LEU

A Related Octagon

- recent work on existential import in syllogistics (Seuren, **Chatti and Schang**, Read)
- \bullet for every categorical statement $\varphi,$ define
 - $\bullet\,$ variant $\varphi_{\rm imp!}$ that explicitly has existential import
 - variant $\varphi_{\rm imp?}$ that explicitly lacks existential import

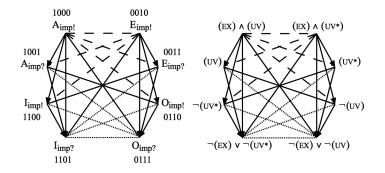
The Logical Geometry of Definite Descriptions – L. Demey

 $\exists x A x \land \varphi$

 $\exists x A x \to \varphi$

A Related Octagon

- Chatti and Schang's 8 formulas are closely related to our 8 formulas
- Chatti and Schang's 8 formulas also constitute a Buridan octagon
- bitstring analysis: partition $\{A_{imp!}, I_{imp!} \land O_{imp!}, E_{imp!}, \neg \exists xAx\} = \Pi_{CAT}^{FOL}$



The Logical Geometry of Definite Descriptions – L. Demey

Buridan octagon for definite description formulas and categorical statements

- induces the partition $\Pi_{OCTA}^{\rm FOL}$ its Boolean closure has $2^6 2 = 62$ formulas
- [the x: Ax] $Bx \not\equiv_{FOI} A \wedge I$
- Buridan octagon for categorical statements that explicitly have/lack existential import
 - induces the partition Π_{CAT}^{FOL}
 - its Boolean closure has $2^4 2 = 14$ formulas
 - $A_{imp!} \equiv_{FOL} A_{imp?} \wedge I_{imp!}$

 $(1000 = 1001 \land 1100)$

KU LEU

 $(000100 \neq 100101 \land 110100)$

• summary:

- one and the same Aristotelian type (Buridan)
- different Boolean subtypes

42

Introduction

- 2 Preliminaries about Definite Descriptions and Logical Geometry
- 3 Basic Aristotelian Diagrams for Definite Descriptions
- 4 Definite Descriptions and Categorical Statements
- 5 The Role of Existence and Uniqueness

(if time permits)

KU LEUVEN

6 Conclusion

The Logical Geometry of Definite Descriptions - L. Demey

- until now: only worked in ordinary first-order logic (FOL)
- Chatti and Schang: deal with existential import by adding (¬)∃*xAx* as conjunct/disjunct to the categorical statements
- alternative approach:
 - existential import \neq property of individual formulas
 - existential import = property of underlying logical system
- introduce new logical system SYL:
 - SYL = FOL + $\exists xAx$
 - interpreted on FOL-models $\langle D, I \rangle$ such that $I(A) \neq \emptyset$
 - analogy with modal logic:
 - $D = K + \Diamond \top$
 - interpreted on serial frames,

i.e. K-frames $\langle W, R \rangle$ such that $R[w] \neq \emptyset$ (for all $w \in W$)

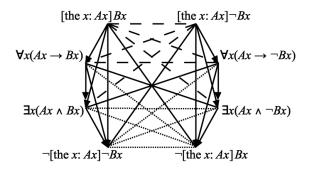
KU LEU

- move from FOL to SYL
- influence on the categorical statements:
 - e.g. A and E are independent in FOL, but become contrary in SYL, etc.
 - degenerate square turns into classical square
- no influence on the definite description formulas:
 - e.g. [the $x \colon Ax$]Bx and [the $x \colon Ax$] $\neg Bx$ are contrary in FOL, and remain so in SYL
 - classical square remains classical square
- no influence on the interaction between definite descriptions and categorical statements:
 - e.g. subalternation from [the x: Ax]Bx to A and I in FOL, and this remains so in SYL
- from Buridan octagon to Lenzen octagon

The Logical Geometry of Definite Descriptions – L. Demey

KULEU

KU LEUVEN



The Logical Geometry of Definite Descriptions – L. Demey

Bitstring Analysis

- which partition Π_{OCTA}^{SYL} is induced?
 - SYL is a stronger logical system than FOL
 - consider $\neg \exists x A x = \gamma_6 \in \Pi_{OCTA}^{SYL}$: FOL-consistent, but SYL-inconsistent
 - $\Pi_{OCTA}^{SYL} = \Pi_{OCTA}^{FOL} \{\gamma_6\}$

• inverse correlation between axiomatic strength and Boolean complexity:

- FOL \rightsquigarrow Buridan octagon \rightsquigarrow Boolean closure of $2^6 2 = 62$ contingencies
- SYL \rightsquigarrow Lenzen octagon \rightsquigarrow Boolean closure of $2^5-2=30$ contingencies

• deleting the sixth bit position \Rightarrow unified perspective on all changes:

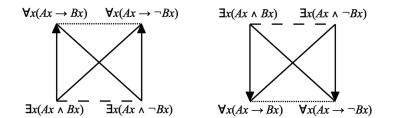
- A (100101) and E (001011) change from unconnected to contary
- $\bullet\,$ I (110100) and O (011010) change from unconnected to subcontrary
- $\bullet\,$ A (100101) and I (110100) change from unconnected to subaltern
- [the x: Ax]Bx (000100) and [the x: Ax]Bx (000010) are contrary and remain so
- [the x: Ax]Bx (000100) and A (100101) are subaltern and remain so

The Logical Geometry of Definite Descriptions - L. Demey

- $\bullet~(\mathrm{EX})$ and (UN) play complementary roles in Russell's theory
- introduce new logical system SYL*
 - SYL* = FOL + $\forall x \forall y ((Ax \land Ay) \rightarrow x = y)$
 - \bullet interpreted on FOL-models $\langle D,I\rangle$ such that $|I(A)|\leq 1$
- move from FOL to SYL*
- no influence on the definite description formulas
 - e.g. [the $x \colon Ax]Bx$ and [the $x \colon Ax]\neg Bx$ are contrary in FOL, and remain so in SYL
 - classical square remains classical square
- influence on the categorical statements:
 - $\bullet\,$ e.g. A and E are independent in FOL, but become subcontrary in SYL
 - degenerate square turns into classical square
 - note: this square is 'flipped upside down'!

The Logical Geometry of Definite Descriptions – L. Demey

KU LEUV



- example: take A to be the predicate 'king of country C'
- then always $|I(A)| \leq 1$
 - if C is a monarchy, then |I(A)| = 1
 - if C is a republic, then |I(A)| = 0

KU LEUV

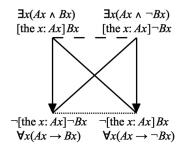
- move from FOL to SYL*
- influence on the interaction between definite descriptions and categorical statements
 - e.g. [the x: Ax]Bx and the E-statement go from FOL-contrary to SYL*-contradictory
 - e.g. in FOL there is a subalternation from [the x: Ax]Bx to the I-statement, but in SYL* they are logically equivalent to each other
- pairwise collapse of def. descr. formulas and categorical statements:

[the $x \colon Ax]Bx$	\equiv_{SYL^*}	1	=	$\exists x(Ax \wedge Bx)$,
\neg [the x : Ax] Bx	≡ _{SYL*}	Е	=	$\forall x (Ax \to \neg Bx),$
[the $x: Ax$] $\neg Bx$	≡ _{SYL*}	0	=	$\exists x (Ax \land \neg Bx),$
\neg [the $x: Ax$] $\neg Bx$	\equiv_{SYL^*}	А	=	$\forall x (Ax \to Bx).$

• from Buridan octagon to collapsed (flipped) classical square

The Logical Geometry of Definite Descriptions – L. Demey

KU LEUVEN



The Logical Geometry of Definite Descriptions – L. Demey

Bitstring Analysis

• elementary calculation yields the partition $\Pi_{COLL}^{SYL^*}$ = { $\exists xAx \land \forall x(Ax \to Bx), \exists xAx \land \forall x(Ax \to \neg Bx), \neg \exists xAx$ }

•
$$\Pi_{COLL}^{SYL^*} = \Pi_{OCTA}^{FOL} - \{\gamma_1, \gamma_2, \gamma_3\}$$

- SYL* is a stronger logical system than FOL
- $\gamma_1, \gamma_2, \gamma_3$ are FOL-consistent, but SYL*-inconsistent
- $\Pi^{\text{SYL}*}_{COLL} = \Pi^{\text{FOL}}_{TDD}$
 - $\bullet~\Pi_{\textit{TDD}}^{\text{FOL}}$ is the partition for the def. descr. square in FOL
 - moving from FOL to SYL* did not change this square
 - but did cause it to coincide with the categorical statement square
- $\Pi_{COLL}^{SYL^*} = \Pi_{CAT}^{FOL} \{\beta_2\}$
 - $\Pi_{CAT}^{\rm FOL}$ is the partition for the cat. statement square in FOL
 - SYL* is a stronger than FOL; β_2 is FOL-consistent, but SYL*-inconsistent
 - moving from FOL to SYL* triggered change from degen. square to (flipped) classical square, which coincides with the def. descr. square

The Logical Geometry of Definite Descriptions – L. Demey

Connection with PAL

- the categorical statements yield a flipped classical square in SYL* \Rightarrow quantification over a domain of at most one element ($|I(A)| \le 1$)
- similar situation in public announcement logic (PAL) (Demey 2012)
- standard semantics: model update operation $(\mathbb{M},w)\mapsto (\mathbb{M}^{\varphi},w^{\varphi})$

$$\begin{split} (\mathbb{M},w) &\models [!\varphi]\psi \quad \text{iff} \quad \text{if} \ (\mathbb{M},w) \models \varphi \ \text{then} \ (\mathbb{M}^{\varphi},w^{\varphi}) \models \psi, \\ (\mathbb{M},w) \models \langle !\varphi \rangle \psi \quad \text{iff} \quad (\mathbb{M},w) \models \varphi \ \text{and} \ (\mathbb{M}^{\varphi},w^{\varphi}) \models \psi. \end{split}$$

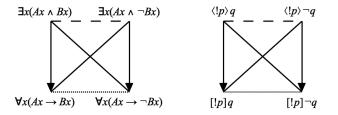
• informal quantificational interpretation:

$$\begin{split} &[!\varphi]\psi \quad \text{iff} \quad \text{after all public announcements of } \varphi \text{, it holds that } \psi \\ &[!\varphi]\psi \quad \text{iff} \quad \text{after at least one public ann. of } \varphi \text{, it holds that } \psi \end{split}$$

KU LEUV

Connection with PAL

- informal quantificational interpretation: $[!\varphi]$ and $\langle !\varphi \rangle$ as universal/existential quantifiers over the set of public ann. of φ
- since $(\mathbb{M}, w) \mapsto (\mathbb{M}^{\varphi}, w^{\varphi})$ is a partial function, the set of all public announcements of φ contains at most one element
 - if (M, w) ⊨ φ, then (M^φ, w^φ) is uniquely defined,
 i.e. there is exactly one public announcement of φ
 - if $(\mathbb{M}, w) \not\models \varphi$, then $(\mathbb{M}^{\varphi}, w^{\varphi})$ is undefined, i.e. there is no public announcement of φ



The Logical Geometry of Definite Descriptions – L. Demey

KU LEU

Introduction

- 2) Preliminaries about Definite Descriptions and Logical Geometry
- 3 Basic Aristotelian Diagrams for Definite Descriptions
- Definite Descriptions and Categorical Statements
- 5 The Role of Existence and Uniqueness

(if time permits)

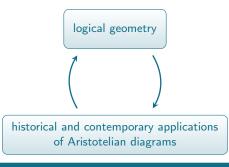
KU LEUVEN

6 Conclusion

The Logical Geometry of Definite Descriptions - L. Demey

Conclusion

- Aristotelian diagrams for Russell's theory of definite descriptions
 - classical square, JSB hexagon, Buridan octagon...
 - the formula \neg [the x: Ax] $\neg Bx$ and its interpretation, negations of [the x: Ax]Bx relative to different subuniverses...
- phenomena and techniques studied in logical geometry
 - bitstring analysis, Boolean closure...
 - Boolean subtypes, logic-sensitivity...



The Logical Geometry of Definite Descriptions - L. Demey

KU LEL

Thank you!

More info: www.logicalgeometry.org

KU LEUVEN

The Logical Geometry of Definite Descriptions - L. Demey